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The Goal:

As part of free-trade agreements, countries might try to provide
evidence as to their freedom from infectious agents in animal
populations that potentially impact their ability to have
unrestricted trade in animals and animal products with other
countries.

Criteria:

Evidence of disease freedom might be based on a criteria such as a
lack of clinical disease for a certain length of time, cessation of use
of vaccines which might disguise the condition, no diagnoses at
local diagnostic laboratories, and often some test based data
(survey or ongoing routine surveillance).



Risk:

Some countries that attempt to demonstrate disease freedom might
be of risk because neighboring countries have the infectious agent.
For example, countries in Europe or South America may have
higher risk of disease. Or others might be of substantially lower risk
because of geographic isolation, e.g., Australia, New Zealand, etc..



Data:

Usually, most countries will try to conduct a national survey using
internationally-recognized diagnostic tests on a large sample of
animals. These surveys could be slaughterhouse-based or based on
the testing of live animals in herds. If the latter occurs, usually the
testing will be performed using a two-stage cluster sampling scheme
with the selection of k herds and then a random sample of n

animals.

The diagnostic tests will usually be serologic in nature because
they are cheap and easy to use. However, such tests always will
have imperfect sensitivity and specificity.



The Problem:

• Certification of a country as “free” from animal disease is
modeled with an indicator variable:

Z = 1 country is infected

= 0 not

• The data available are the diagnostic test results from a survey
of individual live animals within herds.

– Cluster Sampling.

– Imperfect diagnostic test, i.e., sensitivity P (T+|D) and
specificity P (T−|Dc) are below 1.

• We incorporate prior expert opinion, i.e., Bayesian Approach.



Model:

Z = 1 country is diseased w.p. α

= 0 not w.p 1 − α

The data results from cluster sampling. We assume two
populations exist from which the ith herd can be selected, either
diseased or non-diseased.

Define

λi = prevalence of the disease in the population from which the ith

herd was sampled.

πi = prevalence of the disease in a diseased herd.



Model: (Continued)

We also assume that the ith herd, if diseased, may be sampled from
a population with varying prevalence. So

πi ∼ beta(a, b)

where (a, b) is random.

Thus

λi|πi = πi w.p. τ

= 0 w.p. 1 − τ

So

λi|πi, τ ∼ πiBernoulli(τ)



Latent Data for the herd level.

Define ti = status of herd i.

ti = 1 w.p. τ

= 0 w.p. 1 − τ

So now we have λi = πiti.

Latent Data for the individual animals.

Define vij = “true” status of animal j within herd i.

vij = 1 jth animal in ith herd is diseased

= 0 not

So

vij |Z = 1, ti = 1 ∼ Bernoulli(πi)



The Test Results Data:

The data that collected from a cluster sample of herds are the
individual test results Xij , where

Xij = 1 if the jth animal in the ith herd tests positive

= 0 otherwise



The conditional distribution of Xi given that the country is
diseased, Z = 1, the herd level prevalence λi and the test
parameters η and θ, is binomial. That is

Xi|Z = 1, λi, η, θ ∼ Bin(ni, λiη + (1 − λi)(1 − θ))

and for Z = 0

Xi|Z = 0 ∼ Bin(ni, (1 − θ)).

Important: This model generates correlation in disease status
between animals within each herd, but leaves the disease status
independent between herds.



Our Approach:

Our approach to parameter estimation is from a Bayesian
perspective and we implement the Gibbs sampler to produce
posterior estimates or the parameters in the model.



Bayesian Approach using the Gibbs sampler:

The Bayesian approach to estimating the parameters in this model
assumes that the unknown quantities are realizations of random
variables having certain prior distributions. Inferences about the
unknowns are made by investigating the joint posterior
distributions that reflect the gain of knowledge about the unknown
parameters given the observed data. Instead of directly computing
the Bayesian estimates, the Gibbs Sampler is used to iteratively
generate random samples from the joint posterior distribution of
the unknowns and an estimate, such as the posterior mean, is used
to estimate the parameters. Inferences about the unknown
parameters are computed using the marginal conditional posterior
distributions of these unknowns.



Bayesian Statistics:

Here X is the data and Θ is the parameter set.

Model:

p(X|Θ)

Prior distribution:

p(Θ)

Joint distribution:

p(X,Θ) = p(X|Θ)p(Θ)

Posterior distribution:

p(Θ|X) =
p(X|Θ)p(Θ)∫
p(X|Θ)p(Θ)dΘ

∝ p(X|Θ)p(Θ)



Gibbs Sampler: (ref. Gelfand and Smith 1990)

Θ = (θ1, θ2)

p(Θ|X) = p(θ1, θ2|X)

Given the initial value θ
(0)
2 for h = 1, ..., Reps

1. Sample θ
(h)
1 from p(θ1|X, θ

(h−1)
2 ).

2. Sample θ
(h)
2 from p(θ2|X, θ

(h)
1 ).

3. Set h = h + 1 and go to 1.

The our inferences are based on the simulated data after the chain
has stabalized.

(θ(BurnIn+1)
1 , θ

(BurnIn+1)
2 ), ..., (θ(Reps)

1 , θ
(Reps)
2 )



The theory behind the Gibbs sampler says, Θ(1), ...,Θ(Reps) are
realizations of a stationary Markov Chain, with transition
probability from Θ(h−1) to Θ(h),

T (Θ(h−1),Θ(h)) = p(θ1|X, θ
(h−1)
2 )p(θ2|X, θ

(h)
1 )

By Ergodic theory, we can calculate estimates of, for example, θ1 by

1
Reps

∑
h

θ
(i)
1

a.s.−→E[θ1|X],

Reps→∞.



Priors:

The uncertainty in all of the parameters are modeled with
probability distributions, where the hyperparameters are chosen to
reflect expert opinion.

• The “initial” probability the country is diseased,
α ∼ beta(aα, bα).

• The probability of a diseased herd, πi ∼ beta(a, b).

• The hyperparameters that give a different distribution for the
prevalence, (a, b), are assumed to be independently gamma
distributed.

• The herd level prevalence, τ ∼ beta(aτ , bτ ).

• Sensitivity, η ∼ beta(aη, bη).

• Specificity, θ ∼ beta(aθ, bθ).



The Likelihood: For Z = 1

Xij |Z = 1, {vij}, {ti}, {πi}, η, θ ∼ Bernoulli[ηvij (1 − θ)1−vij ].

For Z = 0

Xij |Z = 0 ∼ Bernoulli[(1 − θ)].

The parameter set:

Θ = {Z, {vij}, {ti}, {πi}, (a, b), α, τ, η, θ}
Hyperparamters:

aα, bα, aτ , bτ , aη, bη, aθ, bθ

Fixed parameters:

k, ni



Overall Prior:

p({πi}, (a, b), α, τ, η, θ)

Joint Density:

p({Xij}, {vij}, {ti}, {πi}, (a, b), α, τ, η, θ|Z = 1)

Joint Posterior:

p(Θ|X) ∝ p(X|Θ)p(Θ)



Conditional Marginal Posterior Distributions:

vij |Z = 1, Xij = 1, ti = 1, “rest” ∼ Bernoulli(P (D|Xij = 1))

P (D|Xij = 1) =
ηπi

ηπi + (1 − θ)(1 − πi)

vij |Z = 1, Xij = 0, ti = 1, “rest” ∼ Bernoulli(P (D|Xij = 0))

P (D̄|Xij = 1) =
(1 − η)πi

(1 − η)πi + θ(1 − πi)

vij |Z = 1, Xij = 0, ti = 0, “rest” ∼ Bernoulli(0)



For ti, the indicator of herd i being infected or not. If vij = 1 for
any j within herd i, then

ti|{Xij}, “rest” ∼ Bernoulli(1).

If vij = 0 for all j within herd i, then

ti|{Xij}, “rest” ∼ Bernoulli

(
(1 − π)niτ

(1 − πi)ni + 1(1 − τ)

)
.

Or if Z = 0, then

ti|Z = 0, “rest” ∼ Bernoulli(0).



(a, b)|{Xij}, “rest” are sampled using Adaptive Rejection.

πi|{Xij}, “rest” ∼ beta


a +

ni∑
j=1

vij , b + ni −
ni∑

j=1

vij




α|{Xij}, “rest” ∼ beta [aα + Z, bα + (1 − Z)]

τ |{Xij}, “rest” ∼ beta

(
aτ +

k∑
i=1

ti, bτ + k −
k∑

i=1

ti

)



η|{Xij}, “rest” ∼ beta
(
aη +

∑
xijvij , bη +

∑
(1 − xij)vij

)

θ|{Xij}, “rest” ∼ beta(aθ +
∑

(1 − xij)(1 − vij), bθ +
∑

xij(1 − vij))

Z|{Xij}, “rest” ∼ Bernoulli

(
α(1 − τ)k

α(1 − τ)k + (1 − α)

)



Steps To Perform The Gibbs Sampler:

Given the initial values:

1. For i = 1, ..., k, j = 1, ..., ni sample v
(h)
ij ∼ Bernoulli.

2. For i = 1, ..., k sample t
(h)
i ∼ Bernoulli.

3. Sample (a, b) using Adaptive Rejection.

4. For i = 1, ..., k sample π
(h)
i ∼ beta.

5. Sample α(h) ∼ beta.

6. Sample τ (h) ∼ beta.

7. Sample η(h) ∼ beta.

8. Sample θ(h) ∼ beta.

9. Sample Z(h) ∼ Bernoulli.



Simulation Results:

Presented are the results for a simulated data set. The data set
contains k = 50 herds with n = 20 animals tested with in each
herd. The herd level prevalence is τ = 0.02 and the within herd
level prevalence is πi = 0.10. The testing parameters are η = 0.95
and θ = 0.90.



Priors used:

Each prior is selected from the following information solicited from
an Epidemiologist with knowledge of the subject.

1. α ∼ beta with mode 0.02 and a 95 percentile of 0.04.

2. τ ∼ beta with mode 0.02 and a 95% percentile 0.05.

3. πi ∼ beta with mode 0.05 and 95% percentile 0.10.

4. η ∼ beta with mode 0.95 and a 5% percentile 0.90.

5. θ ∼ beta with mode 0.90 and a 5% percentile 0.85.

6. Note that (a, b) is held fixed in these results. The A.R. part is
still under construction.



Estimation:

The posterior estimates are produced from the means of the
Markov chains produced by the Gibbs sampler.

1. Posterior estimate that this country has the disease is 0.3602.

2. Posterior estimate of the herd level prevalence is 0.242.



Conclusions:

1. This is a Bayesian approach to the problem.

2. The model extensively uses latent data.

3. Incorporates expert knowledge.

4. Gibbs sampling is used with an Adaptive Rejection step.

5. Ultimately we will be able to make estimates of the probability
that a country has a disease (or not) and put them onto
existing scales of disease freedom.
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