###
Statistics 6871 - Time Series
### Lab Two
### Simulated data from ARIMA models.
###########################################################################################
# Simulated data example: AR(1)
par(mfrow=c(2,3))
ar.sim.pos <- rts(arima.sim(list(order=c(1,0,0), ar = 0.7),
n=200))
ts.plot(ar.sim.pos, main="AR(1) phi(1) = 0.7")
acf(ar.sim.pos)
acf(ar.sim.pos, type = "partial")
ar.sim.neg <- rts(arima.sim(list(order=c(1,0,0), ar = -0.7),
n=200))
ts.plot(ar.sim.neg, main="AR(1) phi(1) = -0.7")
acf(ar.sim.neg)
acf(ar.sim.neg, type = "partial")
###########################################################################################
# Simulated data example: MA(1)
# Note: Splus define the Moving Average model as X_t = Z_t -
theta*Z_{t-1}
# The difference is that there is a minus sign in their definition.
par(mfrow=c(2,3))
ma.sim.pos <- rts(arima.sim(list(order=c(0,0,1), ma = -0.9),
n=200))
ts.plot(ma.sim.pos, main="MA(1) theta(1) = 0.9")
acf(ma.sim.pos)
acf(ma.sim.pos, type = "partial")
ma.sim.neg <- rts(arima.sim(list(order=c(0,0,1), ma = 0.9),
n=200))
ts.plot(ma.sim.neg, main="MA(1) theta(1) = -0.9")
acf(ma.sim.neg)
acf(ma.sim.neg, type = "partial")
###########################################################################################
# Simulated data example: ARMA(1,1)
par(mfrow=c(2,3))
arma.sim <- rts(arima.sim(list(order=c(1,0,1), ar = 0.7, ma =
-0.5), n=200))
ts.plot(arma.sim, main="ARMA(1,1) phi(1) = 0.7 theta(1) =
-0.5")
acf(arma.sim)
acf(arma.sim, type = "partial")
###########################################################################################