Bayes' Examples

1. A binary communications system consists of a transmitter that sends 0 s and 1 s to a receiver over a communication channel. Sometimes errors occur, so that when a 1 is sent a 0 is received, and vice-versa. The probabilities of sending 0 s and 1 s are p_{0} and p_{1} respectively. The probability of receiving a 0 when 1 is sent and receiving a 1 when a 0 is sent is p.
(a) Develop an expression for $P\left(R_{1}\right)$, the probability of receiving 1s.
(b) Develop an expression for $P\left(R_{0}\right)$, the probability of receiving 0s.
(c) Find expressions for $P\left(S_{1} \mid R_{1}\right)$, i.e., given 1 is received, what is the probability that 1 was sent.
(d) Find expressions for $P\left(S_{0} \mid R_{0}\right)$, i.e., given 0 was received what is the probability that 0 was sent.
(e) Find an expression for the probability of an error in the system.
2. Suppose a factory has two machines A and B that make 60% and 40% of the total production, respectively. Of their output, machine A produces 3% and machine B produces 5\% defective items.
(a) Find the probability that factory produces a defective part.
(b) Find the probability that a given defective part was produced by machine B.
(c) Find the probability that a given defective part was produced by machine A.
3. Suppose a test for diagnosing heart disease has a 0.90 probability of positively identifying the disease D when it is present. Suppose the test wrongly positively identifies the disease with probability 0.02 when the disease is not present. From statistical data it is know that 5 of 1000 people in the population have the disease in a certain population. An individual is randomly chosen from this this population and is given the test. Calculate the probability that
(a) the test is positive, $P(+)$.
(b) the individual actually suffers from the disease D if the test turns out to be positive, $P(D \mid+)$.
(c) the individual actually does not suffer from the disease D^{c} if the test turns out to be positive, $P\left(D^{c} \mid+\right)$.
(d) Is the result for $P\left(D^{c} \mid+\right)$ surprising? Explain.
