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Treaties:
1. 1963 Limited Nuclear Test Ban Treaty (LTBT)
2. 1968 Non-Proliferation of Nuclear Weapons Treaty (NPT)
3. 1974 Threshold Test Ban Treaty (TTBT)

4. 1976 Peaceful Nuclear Explosions Treaty (PNET)

5. 1996 Comprehensive Test Ban Treaty (CTBT)




Background:

Much of the focus in the past has been on distinguishing possible
nuclear explosions from earthquakes.

Currently, since the testing treaties have put limitations on the
permissible sizes of the nuclear explosions, other smaller seismic

events such as industrial mining explosions have become of interest

in the discrimination problem.

The work presented here is related to distinguishing low-level

nuclear explosions from ripple-fired mining explosions that are on

the same seismic level.




The Problem:

e Monitoring seismic events at Regional Distances for low-level

nuclear tests.

e Other seismic sources need to be ruled out.

— Ripple-Fired Mining Explosions




Ripple-Fired Explosions:

This is a mining technique in which explosions of single devices (or

groups of devices) are detonated in succession.




Monitoring:

Arrays of receivers are put in place at Regional Distances and

seismic data is continually collected. Seismic disturbances that are

above the baseline noise of the area are investigated.
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Amplitudes are distributed according to a random
Bernoulli-Gaussian model. (ref. Cheng, Chen and Li 1996)

p(ajln) ~ (1 —=n)I(a; = 0) + nT'N(pa,02)I(a; > 0)

Signal and path effects follow an AR(3) model. (ref.
Dargahi-Noubary 1995, Tjgstheim 1975)

Sk(t) + gblsk(t — 1) + ...+ gbpsk(t —p) = €k(t)

ex(t) ii.d N(0,0?) and define the precision 7 = =
er(t) iid. N(0,c0?), c=1/SNR, ¢ > 0 is fixed.




Truncated Normal:
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Bayesian Statistics:

Model:
Prior distribution:

Joint distribution:
p(Y,0) =p(Y|®)p(®)
Posterior distribution:

p(Y|O)p(O)
(Y |®)p(©)dO®

p(®Y)

x p(Y|©®)p(O)




Gibbs Sampler: (ref. Gelfand and Smith 1990)
® = (0,0-)
p(®]Y) = p((61,02)Y)
Given (9%0) and (950) for h =1, ..., Reps
1. Sample (9§h) from p(@l\Y,Qéh_l))

2. Sample Qéh) from p(62|Y, 9§h))

3. Set h=h+1 and go to 1.
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OW . O 4re realizations of a stationary Markov Chain,
with transition probability from O o @(h),

T(O©" D @MW) = p@,|Y, 6" p(d,|Y,6")

By Ergodic theory, we can calculate estimates of say 61 by
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Priors:

n ~ BETA(ﬁl, 52)

¢ ~ NP(¢O7 EO)

T~ GAMM A(v1,72)




The Model:

yr(t) = sg(t) + Z

i=1

The parameter set:

@ — {n7 a7 ¢7 7-7 S}

Hyperparamters:

517527:u0470-(217 ¢07 207’71772

Fixed parameters:

c, m



Likelihood:

Y =|y1,. Y4/




Overall Prior:

p(O) p(n,a, @, 7,8)

p(n)p(aln)p(@)p(r)p(S|e, 7)

Joint Density:

p(Y,0) =p(Y|0)p(O)

Joint Posterior:




Conditional Marginal Posterior Distributions:

p(n|Y,rest) ~ beta(fy, 53)

For fixed j =1,...,m

pla;|Y,rest) ~ (1 —n;)I(a; = 0) + ;TN (pa;, 0 )1 (a; > 0)

p(¢p|Y,rest) ~ Ny(o,,2)
p(7|Y,rest) ~ gamma(yy,vs3)

For fixedt=1,....nand k=1, ...,q

p(Sk(Z) ‘Yv "“6375) ~ N(Nsk(i)a ng(i))




n|Y ,rest ~ beta(67, Bs)

5I:m_na+ﬁl7

B =nge + B




a;|Y,rest ~ Bernoulli-Gaussian




@Y, rest ~ Ny(o,,>.)




7|Y, rest ~ gamma(vyy,v5)




sk(t)|Y,rest ~ Normal




Steps To Perform The Gibbs Sampler:

Given the initial values:

{77(0), a® $© (0 g }

for h =1 to Reps:

. Sample n® from a beta.

. Sample a,;h), 7 =1,...,m, from a Bernoulli-Gaussian.

. Sample qb(h) from a p-variate normal.
. Sample 7™ from a gamma.
. Sample s ()M, i=1,...,n, k=1,...,q, from a normal.

. Set h =h + 1 and go to Step 1.




Conclusions and Further Work:

1. one

2. two
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