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A Primer On

Hierarchical Models

Hierarchical or multi-level models are useful in
many applications. Meta-analysis, nested data
structures, longitudinal data, heterogeneous
populations and model selection are the primary
areas of application. This paper provides a
conceptual overview of Bayesian hierarchical
models and discusses making inferences from a
Bayesian perspective. References to papers that
make comparisons between Bayesian and other
inferential methods will be provided, as will
references to software for implementing these
methods. While the utility of hierarchical models is
recognized in many fields including agriculture,
biology, education, social and natural sciences, and
policy, the examples presented here are mostly
from health-related research.

Why Use Hierarchical Models?

You use batteries for your CD player, walkman,
calculator and other small appliances. Suppose you
want to compare brands of batteries to determine
which last longest. How would you design an
experiment to help answer this question? One
possibility is to enlist the help of 15 friends. You
give 15 of your friends identical CD players and
money to buy 10 Everready and 10 Duracell
batteries. Fach friend records the play-time of their
batteries. How do you analyze the data to
determine which brand lasts longer? From a
statistical modeling perspective, this raises
interesting methodological questions.

What is the best way to make inferences from
the 300 observed batteries, and how do you use
these inferences to make purchasing decisions for
your next batteries?
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Although your friends have ‘identical’ CD play-
ers, there may be unobserved differences in the CD
players and in the ways your friends use their play-
ers (e.g., volume) and record their play-times that
may affect battery life. How do we take this into
account? Is it possible that conditions of use are so
different between friends that Everready works bet-
ter for one friend and Duracell works better for
another? If your friends buy their batteries in pack-
ages of 2 or use their batteries in pairs, should these
pairs be treated as independent observations?

This type of analysis problem calls for the use of
hierarchical or multi-level models. They are called
hierarchical models because there is a sequence of
nested probability models. For pedagogical pur-
poses, assume we are interested in only one of the
two brands of batteries and that friends use the bat-
teries solo. At stage 1, there is a model for battery life
within each of your 15 friends. At stage 11, there is a
model that takes into account the variability in aver-
age battery life across your 15 friends. At stage 111 we
incorporate any information we might have (from
sources other than the data at hand) about the aver-
age battery life and the variability we expect to see
between friends. One possibility would be to model
the log of battery lifetimes for friend i as independent
normally distributed data points, t;, with mean
and known error variance o2, For the convenience of
conjugacy, assume that the average battery lifetime
for each friend, p,, is drawn from a normal distribu-
tion with mean L, and variance T. This model says
that the p, are conditionally independent given (L,
7). Finally we assign a prior distribution to y, and 1.
In summary:

Stage 1 t, ~N(u, %)
Stage Il @ W, ~N(U,.7)
Stage I1L: p(W,,T)

i=1K .15, j=1K 10
i=1K 15

While this is a hypothetical example, the world
is full of examples that have similar structure. In
medicine we carry out multi-center clinical trials in
which ‘identical’ treatment protocols are imple-
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mented at multiple sites. In education we examine
teaching practices by observing students clustered
within classrooms. In policy areas we examine
state/federal government interventions by observing
citizens clustered within counties/states. Next we
will examine a health-related example that shares
this same structure. It is the data from a meta-analy-
sis assessing the effect of an antidepressant drug
called S-adenosylomethionene.

A Meta-Analysis Example

In many research areas, including but not limited
to medicine, education, and policy, clustered data
arises in meta-analysis. The goal of meta-analysis is
to combine information from a number of studies
examining the same phenomena to make
inferences and predictions. In such an analysis the
data is clustered within studies. Here we will look
at a meta-analysis of nine clinical trials.

An analysis was conducted to examine the
effects of the antidepressant drug S-adenosylome-
thionene (SAMe), (DuMouchel 1989, Berry and
Stangl, 1996). Nine study sites participated in the
trial. Each site had characteristics setting it apart
from the other sites that affected the distribution of
outcomes at that site. The outcome of interest was
the rate of successes observed with SAMe. The data
are presented in the table below.

An analysis that simply pooled the data across
the 9 sites would give a maximum likelihood esti-
mate of 0.71, and more than 95% of the area under
the likelihood is between 0.6 and 0.8. Compare this
to the maximum likelihood estimates for each site
given in the fourth column of Table 1. Five of the
nine sites had success proportions outside the inter-
val (0.6, 0.8). While sampling variability accounts
for some differences, the variability seen here is
greater than what would be expected from sampling
alone. This suggests that the success probability of
SAMe is not equal across the 9 sites. Should we sim-
ply present 9 estimates or 9 confidence intervals?
This assumes nothing is learned about the effect of
the drug at a particular site from the observations at
the other 8 sites. So, if naive pooling is not satisfac-
tory, and separate estimates are not satisfactory, how
should we model the effects across the 9 sites to
account for the extra variability and come up with
answers that can help us make predictions about
future observation at the nine observed sites and at
sites not included in the study? One possibility is a
Bayesian hierarchical model. Before demonstrating
such a model, lets review the basics of a Bayesian
model.

Bayesian Models: Let’s suppose that the data
in Table 1 came from a single study with 150
patients. Our goal is to estimate the success rate, p,
of the treatment. From a Bayesian perspective p is a
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Table 1. Data from 9 sites in the study of the
antidepressant drug S-Adenosylmethionine.

Site S; n; 5 /n;
1 20 20 1.00
2 4 10 40
3 11 16 .69
4 10 19 .53
5 5 14 .36
6 36 46 78
7 9 10 .90
8 7 9 .78
9 4 6 .67
Totals 106 150 71

random variable with a probability distribution. The
distribution we assign to the success rate before see-
ing the data is called a prior distribution. Because
the success rate must fall between 0 and 1, one pos-
sibility for the prior distribution would be a beta.
The beta distribution has the following form:

I'(a+P)
TP
This distribution has support on the interval

[0,1], and can take a variety of shapes. The mean of
the beta distribution is

pota-pP

o
o+p’
And the variance is
op
5 .
(0+B) (0 +B+D)

Figure 1 shows three possibilities for the choices
of o and . We see that for Beta(or =2, § = 2), there
is visible probability mass on the interval (.03,.97),
for Beta(or =5, B =5) on (0.1, .9), and for Beta(o =
10, B = 10) on (.2,.8). When o + B is large, the vari-
ance of the beta distribution will be small, so the
distribution will be highly concentrated signifying
high certainty about the location of p before we
observe the current data. However, when o + [ is
small the uncertainty in p is considerable. At the
extreme, o, = 1 and B = 1, we have the uniform dis-
tribution. Apriori, we do not favor any value of p in
the interval [0,1] over any other.

The densities in Figure 1 show examples where
o = P, so the beta distribution is symmetric around
0.5. Figure 2 shows a few alternative beta distribu-
tions (mean = 0.25) to demonstrate the diversity of
belief that a beta prior can represent, and hence its
flexibility as a prior distribution.

Let’s suppose that we have chosen values of o
and B for the beta prior distribution. The data are
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Figure 1. Beta distributions symmetric around p = .5.

generated from a binomial distribution with sample
size n and success probability p.

s ~ Binomial(n,p).

How does one arrive at the posterior distribu-
tion of p and the predictive distribution for future
observations? The answer is Bayes theorem. Bayes
theorem relates the posterior and prior distributions
for p through the following formula:

_ f(datalp)f(plo,B)
fpldata) = T(data) :

The denominator of Bayes theorem is the mar-
ginal distribution of the data. It is often referred to as
the normalizing constant. Factoring out this con-
stant, the posterior distribution, f(pldata), is
proportional to the likelihood, f(datalp), times the
prior distribution, f(plo,B).

Given binomial data and a beta prior distribu-
tion, we have the following posterior distribution for

p:

f(pldata) < p>(1—p)"=5p@L(1 = pyPT

_ p5+a—1 (1— p)n—s+[3—l.
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Figure 2. Alternative Beta distributions.

This is the kernel of a Beta distribution with
updated parameters s + oL and n—s + B. So, the pos-
terior distribution of p is a Beta(s + ot and n—s + p).
From this equation we can easily see how conjugacy
allows us to interpret o + 3 as the prior sample size.

win e wn) el

posterior mean = prior weight x prior mean
+ sample weight x sample mean

The posterior mean is a weighted average of the
sample mean, s/n, and the prior mean o/(ct + 3). The
weights are the ratios of prior and observed sample
sizes to the total. From this representation it is easy
to see that if oo + B is small relative to n then the
prior will have little impact on the posterior mean.

In the SAMe example, suppose that the prior
distribution for p was a Beta(3,2). Then the posterior
distribution would be Beta(109, 46). The prior and
posterior distributions are shown in Figure 3. Using
this model, the posterior mean for p is about 0.70,
and the posterior standard deviation is about 0.04. A
95% highest posterior density (hpd) interval is
approximately (0.62, 0.78). Given the relatively dif-
fuse prior distribution this interval is about the same
as a 95% confidence interval.

This is an unsatisfactory result, because 5 of the
9 success probabilities fall outside this interval. This
suggests that an important variance component is
left out of the model, the between study variability.
It suggests the need for a hierarchical model to incor-
porate the variability across studies.

Before adding this additional level of variability,
it should also be noted that we do not want to fix val-
ues of o and B, because we do not know with
certainty the value of these parameters. Instead we
want to assign a distribution that coheres with our
beliefs about plausible values of these parameters.

Hierarchical Model: A multi-level, hierarchical
or random-effects formulation avoids the homo-
geneity assumption by modeling a random effect, p,
for study i. Each p, is assumed to be selected from a
distribution of study effects. Here we will use a
Beta(o,B) distribution for the study effects. Response
at study i is

s, ~ Binomial(n,,p,),

and the individual-study effects are exchangeable.
Conditional on o and B, the p, are independent
draws from a beta distribution.

p; ~ Beta(o,B).
The likelihood function of the p, is:

STATS #32 wm FALL 2001

5




6

Posterior

Figure 3. Prior and posterior distributions for p
assuming patients are exchangeable across all 9 sites.

I .
prx <1 ‘px )ni_ﬁ
i=1

At the last level of the hierarchy, a prior distrib-
ution is placed on o and B. We will leave it
unspecified for now, and simply denote it by

(o, B).

The joint posterior distribution of all the
parameters 1s:

F(p,o.Bls)es f(sp,o.B)f(plo,B)m(oB)

I -
<[Ipra-py

i=l

L T(@4B) o _

L 2N e Bl
Xl,:,IF(OC)F(B)p' 1-p,)
x7(o, ).

Given o and B, each of the p, has an independent
posterior beta distribution. Their joint density is

_t (o +B+n,)
fplouB,s) gr(a+sl)l"([3+”ﬁ51)

p]ows;l (1 _ p[ )B+n‘75_‘71 ]

The marginal posterior of (o,f) is

L T(a+B) T(o+s)T(B+n -s)Ta+B+n)

f(a,Bls)xn(oc,B)g T(@TP) To+B+n)

The posterior distribution of the study effects is
the average Beta density with respect to the posterior
distribution of (o, B). This is also the predictive dis-
tribution for an unobserved study site. Before
calculating this distribution, we now must choose a
prior distribution for o and . Berry and Stangl
(1996) present two possibilities. They consider inde-
pendent geometric distributions for ocand B, as well
as independent uniform distributions on the inte-
gers between 1 and 10, inclusive. For a similar
model, Gelman et al (1995) demonstrate choosing a
parameterization and setting up a diffuse prior dis-
tribution continuous in o and B. For simplicity,
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Figure 4. Posterior distribution for o and [ assuming
uniform prior on integer grid 1,...,10. Posterior mode is
a=7,p=3.
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Figure 5. Posterior contours for o and B assuming
uniform prior on integer grid 1,...,10.

results will be shown using the independent uni-
form distributions on the integers between 1 and 10,
inclusive.

Figures 4 & 5 show the joint posterior distrib-
ution of (o), using the uniform prior distribution.
This prior puts probability 0.01 on each (o) pair.
The figure shows the discrete joint posterior evalu-
ated at each point on the grid. The posterior mode of
the joint distribution is o0 = 7, B = 3, and this point
has probability .063. Figure 5 shows the contours of
the joint posterior. The figure shows the contours as
continuous, but they are really only defined on the
grid of integers between 1 and 10. We can see that
each of the pairs (o,B) in the set {(4,2), (5,2), (6,3),
(7,3),(8.3), (8,4),(9,3),(9,4), (10,4)} have posterior
probabilities greater than or equal to .04.

Figure 6 shows the posterior distribution of the
study effects, or the predictive distribution for an
unobserved study effect. This distribution is a mix-
ture of 100 beta distributions averaged across the
joint posterior distribution of o and § shown in Fig-
ure 4. Compare this to posterior of Figure 3 in which
the model assumed all 150 patients were exchange-
able. Contrary to the posterior in Figure 3, here a
05% interval covers all but one of observed success
probabilities of the 9 sites.

In this particular example, this posterior distri-
bution has about the same variability as an
empirical-Bayes estimate. Empirical-Bayes proce-
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Figure 6. Posterior distribution of p.

dures use point estimates of a and 3 based on the
current data to estimate this distribution. For exam-
ple, if we used the maximum likelihood estimates of
o and B (assuming the discrete parameter space),
the distribution of study effects would be Beta(7,3).
This distribution has a mean of 0.7 and a standard
deviation of 0.138. The distribution presented in
Figure 6 incorporates the additional uncertainty
from a and B, but it is quite close to a Beta(7,3).
Table 2 provides the posterior means for study
specific p, or the equivalently predictive probability
of success for the next patient in each of the 9 sites
and for a patient at an unobserved site (column
total).The table shows that the study-specific p; are
shrunk from their observed rates toward the overall
mean. The observed probabilities for sites 2, 4, 5,
and 9 are pulled upward toward 0.68, while the
observed probabilities for sites 1, 6, 7, 8 are pulled
down toward 0.68. Comparing the shrinkage
between site 6 and 8, demonstrates that shrinkage
increases as sample size decreases. Both studies had
observed success probabilities of .78. However, the
sample size of site 6 was 46, while the sample size of
site 8 was only 9. To approximate, we can use the
mode of the joint posterior of (a,3) which was (7,3).
At this mode, o + B = 10. Hence the mean of site 6
will be shrunk toward the overall mean (0.68) with
weight 10/(10 + 46) = 0.18, while the mean of site 8

Figure 7. Posterior distributions of study specific effects
for sites 1-9 and an unobserved center.

will be shrunk toward the overall mean with weight
10/(10 + 9) = 0.53. This is only an approximation,
because we have used the posterior mode of (ct,3)
rather than average across the posterior distribution
of (a,B). However, from the values in the table, it
can be seen that it is quite close.

This example demonstrates a hierarchical model
for the meta-analysis of a single treatment with a
dichotomous outcome. Modeling is more compli-
cated when two treatments are considered and the
relative treatment effect is of interest. Then one must
decide whether shrinkage should occur within each
treatment, or within the relative treatment effect.
Smith et al. (1996), Berry (2000), and Brophy and
Joseph (2000) demonstrate the use of Bayesian hier-
archical models in the context of meta-analyses
comparing two treatments with dichotomous out-
comes. All three use very different models. The paper
by Smith is especially interesting because it com-
pares the conclusions based on Bayesian hierarchical
models to those from a Mantel-Haenszel-Peto
method. The paper by Berry is especially interesting

Table 2. Posterior Means for Site-Specific Success Probabilities

Predictive Probability

Site s; n; s /n; Uniform prior on L and [3
1 20 20 1.00 .90
2 4 10 40 .53
3 11 16 .69 .69
4 10 19 .53 .57
5 5 14 .36 48
6 36 46 .78 77
7 9 10 .90 .80
8 7 9 .78 .73
9 4 6 .67 .68
Totals 106 150 71 .68
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in that it demonstrates how hierarchical models help
dispel the controversy arising from perceived con-
flicting evidence in mega-clinical trials and
meta-analyses. Lastly, the Brophy and Joseph paper
is especially interesting, because it examines the con-
troversial GUSTO clinical trial, and demonstrates
how Bayesian hierarchical models can be adapted to
assess the impact of protocol biases.

Modeling is also more complicated when out-
comes are not discrete and covariates are included.
Examples of this appear in Stangl (1995, 1996),
Stangl and Huerta (2000) and Sargent et al. (2000).
Stangl uses exponential, exponential mixture, and
exponential changepoint models to compare the
time-to-recurrence of depression for two treatment
regimens. Stangl and Huerta use log-normal models
to compare length-of-hospital-stay, pre versus post,
implementation of a new managed care strategy
incorporating both patient and hospital covariates.
Sargent et al. demonstrates the use of random effects
in Cox proportional-hazards models.

While the example presented here and the ref-
erences cited thus far use hierarchical models for
multi-center trials and meta-analyses, hierarchical
models are also well suited to repeated measures and
growth curve analyses. Racine-Poon and Wakefield
(1996) use hierarchical models to fit pharmacoki-
netic-pharmacodynamic models. Albert and Chib
(1996) demonstrate the use of hierarchical models
for binary repeated measures data.

While the examples presented and referenced
here are all from medical contexts, hierarchical mod-
els are abundant in agriculture, education (Bryk and
Raudenbush, 1992, and Spiegelhalter and Marshall,
1999), engineering, policy (Daniels and Gatsonis,
1999), biology, social sciences (Draper, 1995), and
other areas as well.

Software

The example presented in this paper was simple
and calculations were carried out using JMP
software (SAS Institute, 1989-2000). Models that
are more complicated including nonconjugate
distributions, continuous parameter spaces, and
covariates at various stages of the model require
more sophisticated software. Currently, the most
widely used is BUGS (Spiegelhalter et al., 1996).
This acronym stands for Bayesian Inference Using
Gibbs Sampling. The software uses Markov chain
Monte Carlo methods and allows models to be
specified in a manner analogous to a graphical
model. Smith et al. (1996) presents a straight
forward example, as does the tutorial that comes
with the software. Along with the user’s manual
there are two volumes of examples, most of which
demonstrate the use of Bayesian hierarchical
models to analyze data from multi-site trials, meta-
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analyses, repeated measures and longitudinal
datasets.

The education version of the software can be
downloaded from the internet free of charge at
hitp:/fwww.mrc-bsu.cam.ac.uk/bugs/welcome.shiml

The website also lists published papers that
used BUGS for their analyses. These papers are full
of examples of hierarchical models in diverse appli-
cations including disease mapping, prevalence and
incidence estimation, genetic linkage analysis, stock
assessments, meta-analysis, longitudinal data, multi-
center trials, and pharmacokinetics.

Conclusions

This paper has presented an elementary
introduction to Bayesian methods and Bayesian
hierarchical models. More complete descriptions
can be found in Bayesian Data Analysis by Gelman
et al. (1995) and Bayes and Empirical Bayes Methods
by Carlin and Louis (1996).
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