Statistics 4870/6870: Description6550 Bayesian Statistics (4) Bayes Theorem, subjective probability, conjugate priors, non-informative priors, posterior estimation, credible intervals, prediction, sensitivity analysis, comparison to classical procedures, MCMC, Gibbs sampling, hierarchical Bayesian analysis. Use of statistical software. Report writing. Prerequisites: a graduate level course in Statistics or probability and an upper division course in computational statistics or computer science or consent of instructor. Co-requisite: one of prerequisites allowed as co-requisite. In this course will will introduce the Bayesian approach to Statistical Inference.
|
|