THE BASICS OF TALKING BAYESIAN STATISTICS

Hal Stern Department of Statistics Iowa State University

Introduction

Bayesian methods have become popular and their use continues to grow

Science, 19 November 1999 -

A 236-year-old approach to statistics is making a comeback, as its ability to factor in hunches as well as hard data finds applications from pharmaceuticals to fisheries

- Bayesian statisticians need to communicate with
 - policymakers and decisionmakers
 - researchers in other fields
 - classically trained statisticians
- Today: comments based on my experiences
 - what do Bayesian methods offer
 - some things that are hard to explain
 - illustrate via several examples
 - summary/conclusions

Terminology

- Bayesian methods
 - treat all unknowns as random variables
 - condition on observed data
 - a.k.a. inverse probability
 - 'Bayesian' is a relatively recent term
- Non-Bayesian methods
 - frequentist? but that refers to an interpretation of probability or an approach for evaluating procedures
 - classical? but Bayes published first
 - traditional? but whose tradition!

What do Bayesian methods have to offer

- They make explicit use of probability
- They allow "flexibility" in inference
- Developing/extending models is a natural process
- They provide a way to incorporate prior information
- Computational benefits

- Animal breeding research
 - estimate/predict genetic potential of animals for one or more trait
 - use information from each animal and its relatives
 - select the best animals for breeding
 - example today: flour beetles
 (Wright, Stern and Berger, JABES 2000)

• The model

$Y = X\beta + Z_1u + Z_2c + e$

- -Y = vector of n trait measurements
- -X = matrix of "fixed" effects (e.g., sex)
- $-\beta =$ vector of p fixed effect coefficients
- $-Z_1 =$ incidence matrix for animal effects
- u =vector of N animal random effects
- $-Z_2 =$ incidence matrix for family (env.) effects
- -c = vector of q family random effects
- -e =vector of random errors
- our example (a small problem): n = 324, N = 397, q = 54, p = 6

$$Y = X\beta + Z_1u + Z_2c + e$$

• Distributional assumptions

- $u \sim N(0, \sigma_a^2 A)$ A is known $N \times N$ relationship matrix - $c \sim N(0, \sigma_c^2 I)$ - $e \sim N(0, \sigma_e^2 I)$

- Normality for u is usually justified by thinking of "infinitesimal" model
- Normality for e may be achieved by transformation
- Possible problems/opportunities
 - major genes
 - outliers (preferential treatments)

- Classical approach (REML/BLUP)
 - inference for variance components using restricted maximum likelihood (REML)
 - inference for random effects given variance components
 - * solve Henderson's equations
 - * equivalent to maximizing $p(u, c, \beta | Y, \sigma^2)$

$\int X'X$	$X'Z_1$	$X'Z_2$	(β)	$\left(X'Y \right)$
Z'_1X	$Z'_1 Z_1 + A^{-1} \frac{\sigma_e^2}{\sigma^2}$	$Z_1'Z_2$	$\left \begin{array}{c} u \end{array} \right =$	Z'_1Y
$\int Z'_2 X$	$Z_2'Z_1$	$Z_2'Z_2 + I_q \frac{\sigma_c^2}{\sigma_a^2}$	$\left(\begin{array}{c} c \end{array} \right)$	$\left(\begin{array}{c} I\\ Z_2'Y \end{array}\right)$

- * yields best linear unbiased predictions (BLUP)
- * may require solving large system of equations (can be thousands of rows)

- Bayesian approach
 - probability model
 - * $p(y|u, c, \beta, \sigma^2) = N(y|X\beta + Z_1u + Z_2c, \sigma_e^2 I_n)$
 - * $p(u|\sigma_a^2) = N(u|0, \sigma_a^2 A)$
 - * $p(c|\sigma_c^2) = N(c|0, \sigma_c^2 I_q)$
 - $*~p(eta) \propto 1$
 - * $p(\sigma_a^2, \sigma_c^2, \sigma_e^2) \propto 1/\sigma_e^2$
 - * last two are noninformative(?) and improper prior distributions
 - Markov chain Monte Carlo sampling can be used to study posterior (Gibbs sampling is easy to implement for this model)

- Triboliun castaneum data (flour beetles)
 - -n = 324 animals
 - * one generation out of 16 in study
 - -N = 397 animals (includes 73 ancestors)
 - p = 6 "fixed effects" (intercept, gender, date, interactions)
 - -q = 54 environments
 - * 6 beetles taken from each mating and raised in common environment

• Variance components

	Posterior distribution			Poster.	
Parameter	2.5%	50%	97.5%	mean	REML
σ_a^2	757	6301	22919	7781	2253
σ_c^2	290	3881	11396	4371	4426
σ_e^2	30354	40834	50202	40682	43405
heritability	0.014	0.121	0.398	0.145	0.045

- Animal effects are of great interest
 - BLUP estimates are posterior means conditional on REML variance estimates
 - full Bayesian posterior means accommodate uncertainty about variance parameters
 - both are motivated by squared error loss
 - a key point is that other summaries of the posterior distn are possible

- What do we learn
 - flexible inferences (e.g., ranks)
 - incorporate prior information at some levels of the model (i.e., family structure) ... but not at others
 - computationally convenient
- What questions come up
 - defining optimal point estimates
 (post. mean, post. median, post. mode)
 - role of prior distributions for variances

- Soil texture or composition variables (e.g., % clay) are important for land management
- Goal: estimate quantiles of distn of soil texture variables for 48 inch profile
- Data available
 - horizon = layer of soil
 - -S = surface points (field measurements only on surface horizon, 6-12 in)
 - F = field points (field measurements on all horizons up to 48 in)
 - L = lab points (field and lab data on all horizons up to 48 in)
 - lots of missing data
 (e.g., lab measurements on S and F sites)
- Data are from National Cooperative Soil Survey (NCSS), a USDA/state agencies production
- Ph.D. thesis of P. J. Abbitt (ISU, 1999)

- Calibration/imputation approach
 - calibration
 - * linear model used to calibrate field and lab measurements
 - * lab measurements modeled as a function of field measurements (and other variables) using sites with both types of data
 - * "predict" lab measurements for sites in S/F
 - * different models used for different types of soils

- Calibration/imputation approach (cont'd)
 - imputation
 - after calibration have complete "lab" data except for sites in S
 - next impute calibrated lab data for full profile for sites in S
 - regression model to impute inch i's data using inch 1's data as predictor
 - * different models used for different types of soils
 - quantile function estimator
 - variance estimation via jackknife

- Hierarchical probability model
 - normal linear model relates field measurements to lab measurements (similar to calibration step)
 - lab measurements model
 * normal distribution
 - * site random effect
 - mean and variance differ by horizon type (A, B, C)
 - horizon profile is a Markov model
 (six states at any inch: continue A, start A, continue B, start B, continue C, start C)
- Bayesian inference via MCMC (priors are vague distns centered at values based on science)
- Quantile estimates derived from a mixture of normal (lab measurement) distns with mixture weights a function of the Markov model probs

- Bayesian analysis vs calibration/imputation
 - computation is more difficult for the Bayesian approach
 - calibration approach is series of separate steps
 - more distributional assumptions for Bayesian approach (requires more model checking)
 - Bayesian approach does not rely on asymptotics
 - Bayesian approach provides flexible inference (more/better output)
 - as an example we consider:
 quantiles for % clay in Old Alluvium soils

Things that can be hard to explain

- Interpretation of probability
- The role of prior distns

 (and noninformative prior distns)
- What is the right point estimate?
- How do we test hypotheses?
- Computational difficulties

Interpretation of probability

- Most people have been (and continue to be) trained with the frequentist view of probability
- A common claim is that people relate more naturally to the "Bayesian" (subjective?) view, e.g., in confidence intervals
- This has not always been the case in my consulting/collaborative experiences
- The better-trained the person the more likely this is to be a problem

The role of prior distributions

- Many want to use the likelihood function as a distn on parameters (e.g., Fisher's fiducial inference) but are unwilling to specify a prior distn
- This has always been the most problematic part for people
- Subjective prior distns often worry people
- The fact that the prior distn doesn't matter much for large sample size helps but not always true in hierarchical models
- In practice people are drawn to noninformative prior distns but ...
 - "noninformative" is not well defined
 - "flat" and "vague" are clear concepts but don't always yield noninformative prior distns
 - this subject is very confusing to people
- Recommendation might be to use vague proper prior distns and perform a sensitivity analysis

Point estimates

- MLE is the dominant point estimation technique
- To get a unique Bayesian point estimate one must specify a loss function
- Example: animal breeding

	Posterior distribution			Poster.	
Parameter	2.5%	50%	97.5%	mean	REML
σ_a^2	757	6301	22919	7781	2253
σ_c^2	290	3881	11396	4371	4426
σ_e^2	30354	40834	50202	40682	43405
heritability	0.014	0.121	0.398	0.145	0.045

- REML estimates differ from posterior mean/median
- Why? ML is more like a mode

Testing Hypotheses

- Applied science research is still often dominated by .05 significance level tests
- Can sometimes be addressed in a Bayesian analysis by examining 95% posterior interval (but not always, e.g., variance components)
- Bayes factors are an option
 - can be difficult to compute
 - sensitive to prior distns
 - interpretation?
- The best solution is to shift emphasis to point estimation and posterior intervals

Ex. 3: binary regr with random effects

- Natural selection study
- 244 turtles in 31 families
- Response: survival (0/1)
- Predictors: birthweight, clutch/family effects
- Data collected by Janzen et al. (Ecology, 2000)
- It turns out that birthweight is a significant factor
- Question: are clutch effects important?

Ex. 3: binary regr with random effects

- Probit model with random effects (Sinharay and Stern, 2000 technical report)
- Posterior inference
 - coefficient of birthweight
 * post. mean = .38, post. s. d. = .10
 - * 95% int. = (.18, .59)
 - variance component (σ^2) * post. mean = .32, post. s. d. = .12
 - * post. mode = .26
 - * 95% int. = (.16, .61)
- Bayes factor (simple probit model vs probit with random effects): 3.25
- Bayes factor is sensitive to the prior on σ^2
- Conclude variance parameter is not significant

Summary/Conclusions

- Need to emphasize the difference between procedure development and procedure evaluation
- Outlook for increased use of Bayesian procedures is good
 - flexible inference
 - natural to develop/extend models (e.g., missing data)
 - success stories continue to develop
- Cautions
 - need to educate as we work
 - more work to be done on model checking/sensitivity analysis
 - these are generally not black-box procedures, we need to work with scientists