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Introduction

� Bayesian methods have become popular and their

use continues to grow

Science, 19 November 1999 -

A 236-year-old approach to statistics is

making a comeback, as its ability to factor

in hunches as well as hard data �nds

applications from pharmaceuticals

to �sheries

� Bayesian statisticians need to communicate with

{ policymakers and decisionmakers

{ researchers in other �elds

{ classically trained statisticians

� Today: comments based on my experiences

{ what do Bayesian methods o�er

{ some things that are hard to explain

{ illustrate via several examples

{ summary/conclusions



Terminology

� Bayesian methods

{ treat all unknowns as random variables

{ condition on observed data

{ a.k.a. inverse probability

{ `Bayesian' is a relatively recent term

� Non-Bayesian methods

{ frequentist? .... but that refers to an

interpretation of probability or an approach

for evaluating procedures

{ classical? .... but Bayes published �rst

{ traditional? .... but whose tradition!



What do Bayesian methods have to o�er

� They make explicit use of probability

� They allow \exibility" in inference

� Developing/extending models is a natural process

� They provide a way to incorporate

prior information

� Computational bene�ts



Ex. 1: linear models in animal breeding

� Animal breeding research

{ estimate/predict genetic potential of animals

for one or more trait

{ use information from each animal and

its relatives

{ select the best animals for breeding

{ example today: our beetles

(Wright, Stern and Berger, JABES 2000)



Ex. 1: linear models in animal breeding

� The model

Y = X�+ Z1u+ Z2c+ e

{ Y = vector of n trait measurements

{ X = matrix of \�xed" e�ects (e.g., sex)

{ � = vector of p �xed e�ect coe�cients

{ Z1 = incidence matrix for animal e�ects

{ u= vector of N animal random e�ects

{ Z2 = incidence matrix for family (env.) e�ects

{ c = vector of q family random e�ects

{ e= vector of random errors

{ our example (a small problem):

n = 324;N = 397; q = 54; p= 6



Ex. 1: linear models in animal breeding

Y = X�+ Z1u+ Z2c+ e

� Distributional assumptions

{ u � N(0; �2aA)

A is known N �N relationship matrix

{ c � N(0; �2c I)

{ e � N(0; �2e I)

� Normality for u is usually justi�ed by

thinking of \in�nitesimal" model

� Normality for e may be achieved by

transformation

� Possible problems/opportunities

{ major genes

{ outliers (preferential treatments)



Ex. 1: linear models in animal breeding

� Classical approach (REML/BLUP)

{ inference for variance components using restricted

maximum likelihood (REML)

{ inference for random e�ects given

variance components

� solve Henderson's equations

� equivalent to maximizing p(u; c; �jY; �2)
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� yields best linear unbiased predictions (BLUP)

� may require solving large system of equations

(can be thousands of rows)



Ex. 1: linear models in animal breeding

� Bayesian approach

{ probability model

� p(yju; c; �; �2) = N(yjX� + Z1u+ Z2c; �
2
e In)

� p(uj�2a) = N(uj0; �2aA)

� p(cj�2c ) = N(cj0; �2c Iq)

� p(�) / 1

� p(�2a ; �
2
c ; �

2
e ) / 1=�2e

� last two are noninformative(?) and improper

prior distributions

{ Markov chain Monte Carlo sampling

can be used to study posterior

(Gibbs sampling is easy to

implement for this model)



Ex. 1: linear models in animal breeding

� Triboliun castaneum data (our beetles)

{ n = 324 animals

� one generation out of 16 in study

{ N = 397 animals (includes 73 ancestors)

{ p = 6 \�xed e�ects"

(intercept, gender, date, interactions)

{ q = 54 environments

� 6 beetles taken from each mating and raised

in common environment



Ex. 1: linear models in animal breeding

� Variance components

Posterior distribution Poster.

Parameter 2.5% 50% 97.5% mean REML

�2a 757 6301 22919 7781 2253

�2c 290 3881 11396 4371 4426

�2e 30354 40834 50202 40682 43405

heritability 0.014 0.121 0.398 0.145 0.045



Ex. 1: linear models in animal breeding

� Animal e�ects are of great interest

{ BLUP estimates are posterior means conditional

on REML variance estimates

{ full Bayesian posterior means accommodate

uncertainty about variance parameters

{ both are motivated by squared error loss

{ a key point is that other summaries of the

posterior distn are possible



Ex. 1: linear models in animal breeding

� What do we learn

{ exible inferences (e.g., ranks)

{ incorporate prior information at some levels of

the model (i.e., family structure) ... but not at

others

{ computationally convenient

� What questions come up

{ de�ning optimal point estimates

(post. mean, post. median, post. mode)

{ role of prior distributions for variances



Ex. 2: estimation of soil texture quantiles

� Soil texture or composition variables

(e.g., % clay) are important for land management

� Goal: estimate quantiles of distn of soil texture

variables for 48 inch pro�le

� Data available

{ horizon = layer of soil

{ S = surface points (�eld measurements only

on surface horizon, 6-12 in)

{ F = �eld points (�eld measurements on all

horizons up to 48 in)

{ L = lab points (�eld and lab data on all horizons

up to 48 in)

{ lots of missing data

(e.g., lab measurements on S and F sites)

� Data are from National Cooperative Soil Survey

(NCSS), a USDA/state agencies production

� Ph.D. thesis of P. J. Abbitt (ISU, 1999)



Ex. 2: estimation of soil texture quantiles

� Calibration/imputation approach

{ calibration

� linear model used to calibrate �eld and lab

measurements

� lab measurements modeled as a function of

�eld measurements (and other variables)

using sites with both types of data

� \predict" lab measurements for sites in S/F

� di�erent models used for di�erent types

of soils



Ex. 2: estimation of soil texture quantiles

� Calibration/imputation approach (cont'd)

{ imputation

� after calibration have complete \lab" data

except for sites in S

� next impute calibrated lab data for full pro�le

for sites in S

� regression model to impute inch i's data

using inch 1's data as predictor

� di�erent models used for di�erent types

of soils

{ quantile function estimator

{ variance estimation via jackknife



Ex. 2: estimation of soil texture quantiles

� Hierarchical probability model

{ normal linear model relates �eld measurements

to lab measurements (similar to calibration step)

{ lab measurements model

� normal distribution

� site random e�ect

� mean and variance di�er by

horizon type (A, B, C)

{ horizon pro�le is a Markov model

(six states at any inch: continue A, start A,

continue B, start B, continue C, start C)

� Bayesian inference via MCMC (priors are vague

distns centered at values based on science)

� Quantile estimates derived from a mixture of

normal (lab measurement) distns with mixture

weights a function of the Markov model probs



Ex. 2: estimation of soil texture quantiles

� Bayesian analysis vs calibration/imputation

{ computation is more di�cult for the Bayesian

approach

{ calibration approach is series of separate steps

{ more distributional assumptions for Bayesian

approach (requires more model checking)

{ Bayesian approach does not rely on asymptotics

{ Bayesian approach provides exible inference

(more/better output)

{ as an example we consider:

quantiles for % clay in Old Alluvium soils



Things that can be hard to explain

� Interpretation of probability

� The role of prior distns

(and noninformative prior distns)

� What is the right point estimate?

� How do we test hypotheses?

� Computational di�culties



Interpretation of probability

� Most people have been (and continue to be) trained

with the frequentist view of probability

� A common claim is that people relate more

naturally to the \Bayesian" (subjective?) view,

e.g., in con�dence intervals

� This has not always been the case in my

consulting/collaborative experiences

� The better-trained the person the more likely this

is to be a problem



The role of prior distributions

� Many want to use the likelihood function as a

distn on parameters (e.g., Fisher's �ducial

inference) but are unwilling to specify a prior distn

� This has always been the most problematic part

for people

� Subjective prior distns often worry people

� The fact that the prior distn doesn't matter

much for large sample size helps ....

but not always true in hierarchical models

� In practice people are drawn to noninformative

prior distns but ...

{ \noninformative" is not well de�ned

{ \at" and \vague" are clear concepts but don't

always yield noninformative prior distns

{ this subject is very confusing to people

� Recommendation might be to use vague proper

prior distns and perform a sensitivity analysis



Point estimates

� MLE is the dominant point estimation technique

� To get a unique Bayesian point estimate one must

specify a loss function

� Example: animal breeding

Posterior distribution Poster.

Parameter 2.5% 50% 97.5% mean REML

�2a 757 6301 22919 7781 2253

�2c 290 3881 11396 4371 4426

�2e 30354 40834 50202 40682 43405

heritability 0.014 0.121 0.398 0.145 0.045

{ REML estimates di�er from posterior mean/median

{ Why? ML is more like a mode



Testing Hypotheses

� Applied science research is still often dominated

by .05 signi�cance level tests

� Can sometimes be addressed in a Bayesian analysis

by examining 95% posterior interval

(but not always, e.g., variance components)

� Bayes factors are an option

{ can be di�cult to compute

{ sensitive to prior distns

{ interpretation?

� The best solution is to shift emphasis to

point estimation and posterior intervals



Ex. 3: binary regr with random e�ects

� Natural selection study

� 244 turtles in 31 families

� Response: survival (0/1)

� Predictors: birthweight, clutch/family e�ects

� Data collected by Janzen et al. (Ecology, 2000)

� It turns out that birthweight is a signi�cant factor

� Question: are clutch e�ects important?



Ex. 3: binary regr with random e�ects

� Probit model with random e�ects

(Sinharay and Stern, 2000 technical report)

� Posterior inference

{ coe�cient of birthweight

� post. mean = .38, post. s. d. = .10

� 95% int. = (.18, .59)

{ variance component (�2)

� post. mean = .32, post. s. d. = .12

� post. mode = .26

� 95% int. = (.16, .61)

� Bayes factor (simple probit model vs probit with

random e�ects): 3.25

� Bayes factor is sensitive to the prior on �2

� Conclude variance parameter is not signi�cant



Summary/Conclusions

� Need to emphasize the di�erence between

procedure development and procedure evaluation

� Outlook for increased use of Bayesian procedures

is good

{ exible inference

{ natural to develop/extend models

(e.g., missing data)

{ success stories continue to develop

� Cautions

{ need to educate as we work

{ more work to be done on

model checking/sensitivity analysis

{ these are generally not black-box

procedures, we need to work with scientists


