BUGS manual 5
1 Introduction

1.1 What is BUGS?

BUGS is a program that carries out Bayesian inference on statistical problems using a simulation
technique known as Gibbs sampling.

BUGS assumes a Bayesian or full probability model, in which all quantities are treated as random
variables. The model consists of a defined joint distribution over all unobserved (parameters and
missing data) and observed quantities (the data); we then need to condition on the data in order to
obtain a posterior distribution over the parameters and unobserved data. Marginalising over this
posterior distribution in order to obtain inferences on the main quantities of interest is carried out
using a Monte Carlo approach to numerical integration (Gibbs sampling).

There is a small set of BUGS commands to control a session in which a (possibly very complex)
statistical model expressed using the BUGS language is analysed. A compiler processes the model
and available data into an internal data structure suitable for efficient computation, and a sampler
operates on this structure to generate appropriate values of the unknown quantities. A suite of
S-plus (Statistical Science, Inc) functions, CODA (Best et al., 1995), is provided for analysis and
plotting of the output files, and diagnosing convergence.

1.2 For what kind of problems is BUGS best suited?

BUGS is intended for complex models in which there may be many unknown quantities but for
which substantial conditional independence assumptions are appropriate. Particular structures
include generalised linear models with hierarchical or crossed random effects, latent variable or
frailty models, measurement errors in responses and covariates, informative censoring, constrained
estimation, and missing data. See Gilks et al. (1993) for examples of typical applications. BUGS
is a general purpose program and so it is inevitable that many types of models, such as spatial
smoothing, could be more efficiently implemented in special purpose software. There are currently
restrictions on the classes of model that can be fitted using this version of BUGS, and these will be
made clear in the manual (see Section 3.2).

1.3 Markov Chain Monte Carlo (MCMC) techniques

BUGS is intended for problems for which there is no exact analytic solution, and for which standard
approximation techniques have difficulties. Markov Chain Monte Carlo (MCMC) is being increas-
ingly used as an approach for dealing with such problems. The basic philosophy behind MCMC is
to take a Bayesian approach and carry out the necessary numerical integrations using simulation:
see Gelfand and Smith (1990); Smith and Roberts (1993) for background. Instead of calculating
exact or approximate estimates, this computer-intensive technique generates a stream of simulated
values for each quantity of interest. To perform MCMC additional tools are required to form
samples from the relevant distributions, monitor the stream for convergence, and summarise the
accumulated samples. See Gilks et al. (1995) for a wide range of articles on all practical aspects of
using MCMC.

1.4 A simple example

We introduce a trivial problem for which exact solutions are possible in order to illustrate the
nature of the Gibbs approach. This example will then be analysed in stages in order both to check
the installation of the software and to illustrate the use of BUGS.

Consider a set of 5 observed (z,y) pairs (1,1),(2,3),(3,3), (4, 3), (5,5). We shall fit a simple linear
regression of y on z, using the notation

Y; ~ Normal(y;,) (1)
pi = a+fzi—7) (2)

Note that we have separated out the linear function (2) expressing the dependence on z; of the
expectation of Y; , from the stochastic link (1) between p; and Y;. This is not strictly necessary but
enhances clarity and follows the tradition of generalized linear modelling. The parameterisation
of the normal distribution is also slightly non-standard, in that 7 = 1/0? = 1/variance(Y) = the
precision of Y.

Classical unbiased estimates are & = 7 = 3.00, 3 =2 vilzi —)/ (@i — 7)? = .80, o? = Sy —
)%/ (n—2) = .533, with Var(&) = 6%/n = .107, Var(B) = 62/ 3,;(z; —T)?> = .053. Both frequentist
and Bayesian ‘noninformative’ priors lead to inference being based on the pivotal quantities (o —

&)/+/Var(é) and (8 — 3)/y/Var(B) both having ¢3 distributions with mean 0 and variance 3, and

o?(n —2)/o? having a x? distribution, leading to 95% confidence/credible intervals given below.
95% interval for o : & + 3.184/Var(&) = (1.96, 4.04)

95% interval for 8 : (4 3.18y/Var(8) = (.07, 1.53)
95% interval for 7 : (.22,9.35) = (36%) = (.14, 5.85)

The BUGS language allows a concise expression for the model which is contained in the file 1ine.bug,
with the core relations (1) and (2) described as follows.

for (i in 1:N) {

Y[i] ~ dnorm(mu[il,tau);

mu[i] <- alpha + beta*(x[i] - x.bar);
}

Simple commands for running BUGS are in the file 1ine.cmd and are reproduced below.

compile("line.bug")
update (500)
monitor (alpha)
monitor(beta)
monitor (sigma)
monitor (tau)
update (1000)
stats(alpha)
stats(beta)
stats(sigma)
stats(tau)

qQ)

BUGS manual 7

This compiles the model, generates an initial run of 500 iterations as a “burn-in” in order (with
luck) to reach convergence, starts monitoring samples of parameters of interest, and then performs
1000 iterations that result in a file containing a series of values simulated from the joint posterior
of the unknown quantities. Summary statistics are available directly, or a graphics program may
be used to display the whole sample. For example, the CODA suite of functions for S-Plus provided
with BUGS (see section 7) will give the output shown in Figure 1.

Output for Line analysis

kernel density for alpha (1000 values) trace of alpha (1000 values)

mean = 3.017
5.4=0.6855

5

alpha
0

-10 5 [5 10 600 800 1000 1200 1400
alpha iteration

kernel density for beta (1000 values) trace of beta (1000 values)

mean = 0.7812
5.4=0.4005

0= 0.2418 ~

95%= 1331

2 0 2 4 600 800 1000 1200 1400
beta iteration

kernel density for sigma (1000 values) trace of sigma (1000 values)

mean = 1,041
sd=08775
50 = 0.4629
95% = 2138

sigma
0 2 4 6 8 10 12

0 5 10 15 20 25 600 800 1000 1200 1400
sigma iteration

kernel density for tau (1000 values) trace of tau (1000 values)

mean = 1836
sd=1441

5% = 02187
95% = 4.666

0 10 20 30 600 800 1000 1200 1400
tau iteration

Figure 1: BUGS output for model line.bug run for 1000 iterations after a 500 iteration burn-in.

The results may be compared with the exact solutions above. Note the occasional fairly extreme
values for the parameters (although these are quite compatible with the posterior distribution). In
addition, no checking for convergence has been done, although various diagnostics are available in
CODA for that purpose.

1.5 Hardware platforms

Version 0.50: Instructions will be given for SUN Sparc Station, Hewlett-Packard, and PC
386+387/486/586 versions. The default for PCs is that a maths co-processor is available: however
there is only a minor reduction in speed without one and we can provide versions that do not need
it. Other platforms may soon be available - please contact us.

