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Should You Have in

Binomial Confidence

Infervals?

mong 18-year-oid students, what percentage

has clear career goals? Suppose you ask a

dom sample of # = 25 such sudents from your

school and find that x = 8 have specific careers in mind.

So their proportion in your sample is f=x/n= 8/25 = 0.32.

From this information, you might guess the population

proportion, p, for your school is somewhere around 1/3.

However, the number of Yes answers, X, is a random

variable. Specifically, X is a binomial randem variable with

n = 25 tdals and p = probability of a success = P(Yes).

How close to £ might the true value of p lie? The formula

for the traditional 95% confidence interval (CI) shown in
many elementary statistics books is:

. 2(1-p)
+1.96, /-~———
? n

In our case, this gives 0.32 + 0.183. Here, 0.32 is the
point estimate of p and 0.183 is the margin of error for
the estimate. Notice that both 0.32 and 0.183 are computed
from X According to this formula, we would be 95%
confident that the interval 0.137 and 0.503 captures the
true value of p. That's a pretty long confidence interval,
but with so litle data, we can’t expect great precision. Of
course, if we interviewed more people, we would get a
shorter CI.

Now we consider whether our 95% confidence in
such intervals is justified. The traditional formula displayed
above is based on two assumptions. The argument goes
like this:

First: The binomial distribution of X is approximately
normal for large n. So the disuibution of
ﬁ=X/n is approximately normal with mean
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p, and variance o2=p(1-p)/n, and @-pVo
is approximately standard normal. Thus,

P{-1.96 < () -p)/ 6$1.96}=0.95.

Manipulating the inequality in this expression, we
find there is 95% probability that p lies in the interval
pt1960. But, this expression is useless just as it
stands. We cannot use it to calculate a CI because p
is unknown and so ¢ is alsc unknown.

Second: In order 1o get a CI, we also assume that o2
is well approximated by p (1 — /0. So, under the
square root in the displayed formula for the traditional
CI, we assume it is okay to use the estimate § instead
of the true value of p.

Especially for small values of n, there are good
theoretical reasons 0 be skeptical of both these
assumptions. The normal distribution is continuous and
symmetrical. The binomial distdibution that it is supposed
to approximate is discrete and may be skewed when p
differs from 1/2. Perhaps more importantly, one has to
wonder how much error in the length of the CI arises from
using _p as an estimate of p to get the margin of error. If
the CI is longer or shorter than it should be, that would
affect the chance it covers the true value of p.

Moareover, there 15 a serious practical problem with
the traditional CL If p G or 1, then the estimated margin
of error becomes 0 and we have a CI of 0 length. For
example, if we sampled 25 cattle at random from the
United States and found none of them had mad cow
disease, an alleged 99.99% CI would ‘guarantee’ that the
entire United States is free of the disease. How wonderful
it would be if life were so simple!

In this article, we will see two things: (1) For small n,
the true coverage probability of the traditional CI is




often distressingly far below 93%, and (2} a very simple
modification of the traditional CI works much better.

Exploring Coverage Probabilities of

The Traditional Cl

What do we mean by “coverage probability”? To answer
this question, consider the values n=25 for the number of
trials and p=0.3 for the population proportion. In this case,
the random variable X takes 26 values: x = 0, 1, 2, ... 25. As it
turns out, it is sufficient for us to look at the values 2 through
14, and we show them in the first column of Table 1. The
second column shows the corresponding possible values of
the estimate / ~ x/#. The next two columns show the lower
and upper confidence limits based on the traditional CL
Notice the interval {0.137, 0.503) mentioned earlier is one of

these (look at the box in row 8).

x Est. LCL UcClL Probability

0.08 00263 0.1843

0.12 0.0074 0.2474
;.06 00163 03037 00572
020 00432, 0.3568  0.1030
5 02024 00726 04074 0.1472
008 01040 0.4560 0.1712
' 0.5029 | 0.1651
05482 0.1336
0.5020 0.0916
0.6346  0.0536
04758 0.0268

. 0.7158

14 0.56  0.3654 07546

P{Cl covers 0.30} = 0.9493

Table 1. llusirating the Coverage Probability of the Traditional
Confidence Interval when p = 0.30. This is the sum of the nine
probabilities shown in the last column. None of the omitted values
smaller than x = 2 or greater than x = 14 has a Cl that covers
0.30.

So far, we have used only the parameter n=25. Now
we begin (o use p=0.30. We notice that the CIs resulting
from values of x from 4 through 12 cover (include) this
value of p, even though the upper end of the CI for x=4 is
just barely larger than 0.30.

For the last column of Table 1, we compute the
binomial probabilities for these outcomes x=4, 5, ... 12,
based on the parameters n=25 and p~=0.30. For example,
the first of the relevant probabilities is computed as

pix = 4= (3*) a3%07% =0.0572

QPIE T, D004

The coverage probability for £=0.30 is the sum of
all nine of these prokabilities:

P(Cover) = PIX=4] + P{X =5} +..+P(X=12}
= 0.0572 + 0.1030 + -- +0.0268 = 0.9493.

Thus, the coverage probability of the traditional 95%
Cl is 94.93% when n=25 and p=0.30. This result is very
close 10 the promised 95% confidence level. So what's
the problem?

x Est CL UCL  Probobility
0.08 -0.0263 0.1863
0.12 00074 02474
0.16 00163 03037
020 00432 03568 0.0910
0.24 00726 04074 - 0.1363; -
028 0.1040 04560 0.1662"
032 0.1371 05029, "0.168Q

036 0.1718 0.5482°. 0.1426 .

- 040 02080 . 0.5920. 03025
0.44 02454 06346 :0.0628
0.48 0.2842 - 0.6758 -0.0329 - -
0.52 0.3242 07158
0.56 03654 0.7546

P{Cl covers 0.31} = 0.9024

Toble 2. llustrating the Coverage Probability When p = 0.31. This
is the sum of the eight probabilities shown in the last column. In
contrast to Table 1, the confidence interval on row x = 4 does
not cover p = 0.31, so ils probability is not included.

The problem is that if we change o p=0.31, the
interval corresponding to x=4 no longer covers p, and
the coverage probability drops to 90.24%. Thus, what is
supposed to be a 95% CI has nowhere near 95% coverage
probability. The probability column of the table changes

. a bit with p = 0.31, but most of this difference results

from the loss of the probability corresponding to x = 4
(see Table 2 and Figure 1),
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Figure 1. Comparing the coverage probabilities of fraditional
confidence intervals for p=0.30 ltop) and p = 0.31. A smalt change
in p can result in @ large change in the coverage probability of the
confidence interval.
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We can see that there are “lucky” values of p,
such as 0.30, with coverage probabilities close to 95%
and “unlucky” ones, such as 0.31, with much smaller
coverage probabilities. Unfortunately, it turns out the
traditional CI has many more uniucky values of p than
lucky ones.

To get a more comprehensive view of the generally
bad performance of the traditional 95% CI, we can use the R
software package 1o step through 2,000 values of p ranging
from near 0 to near 1 and plot the coverage probability for
each of these values of p. The results are shown in Figure 2,
Itis clear that, for most values of p, the coverage probability
is below 95%—often very much below. The two heavy
dots in this figure show the coverage probabilities for
£=0.30 and 0.31 illustrated in Tables 1 and 2.

Because n=25 is a very small number of subjects,
it makes sense to see what happens to caverage
probabilities for larger values of n. If we look at graphs
similar to Figure 2, but with #=50 and n=100, they
unfortunately show very little improvement—and then
mainly for values of p near 1/2 (see Figure 3, where
n=100). The fundamental problem remains: The coverage
probability falls far below 95% for many values of b It
seems many unlucky combinations of # and p persist, even
for swprisingly large values of n. The traditional 95% 7
Jor binomial proportions simply cannot be relied upon to
provide the promised level of confidence.

Coverage Probebilities of Traditional Ciy; n = 25
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Figure 2. Coverage probabilities for raditional confidence intervals
are mostly below 95%. As p changes continuously, the discreteness of
the binomial distribution causes some abrupt changes in the coverage
prabability. Two heavy dots show the coverage probabilities ot p =
0.30 and .31, which were computed in Tables 1 and 2.

Modified Confidence Intervals

Many proposals have been made to improve the
coverage probabitities of CIs for the binomial proportion.
Perhaps the simplest of these is the rule to “add two
successes and two failures” 1o the data. This means
that X is adjusted 0 X, = X+2 and » is adjusted to
ni=n+4  Then, the modified point estimate is
Po= Xt/ =(X + 2)/(n + 4). The effect is to “shrink” the
distance between the point estimate and 1/2. In order to

Coverage Probabilities of Traditional Cis: n = 100
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Figure 3. Even for o sample as large as 100, kaditional “95%
confidence” intervals have coverage probabilities far below 95% for
many values of p.

compute the modified CI, simply use 6 , and n, in place
of pand n, respectively, This kind of modified CI is called
the Agresti-Coull CI or the “plus-four” CL. For our pol
with eight Yes answers out of 25, the adjusted results are
shown in Table 3, along with cur earlier resuits using
the traditional CI.

Type of CI Point Margin of CJ Length
Est. Error

Traditional 320 183 (.137,.503] 346

Plus-Four 345 173 .172,.518] 346

Table 3. Comparison of Traditional and Plusfour Confidence Infervals
Based on 8 Yes Answers out of 25 Subjects.

Coverage probabilities of 95% plus-four CIs for n =
25 are shown in Figure 4. While coverage probabilities
for these CIs are seldom exactly 95%, they are mainly
much closer to 95% than for the traditional intervals, Also,

Covarngs Probabliities of Plus-our Cls: n = 25
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Figure 4, Confidence inlervals baosed on the rle “add o
Successes and wo Failures.” Two heavy dots show the coverage
probabilities at p = 0.30 and 0.31 for this Iype of confidence
interval. Coverage probabilities here are generally much closer 1o
95% than those in Figure 2.




coverage probabilities exceed 95% for many values of p and
fall below 95% for relatively few values of p.

In particular, returmning to our earlier examples, for
samples of size 25, the coverage probability of the plus-
four CI is 94.68% for p=0.30 and 95.06% for p=0.31. Both
probabilities are remarkably close to 95% (see the heavy
dots in Figure 4). Many values of p in the vicinity of 0.3
have larger coverage probabilities, and some have smaller
coverage probabilities.

Lengths of Confidence Intervals

Of course, one can always improve coverage by
making confidence intervals longer. At an absurd
extreme, an all-purpose 100% CI for p—and a totally
useless one—would be the interval (0, 1). So it is
reasonable to ask how the average lengths of the
plus-four Cls compare with the average lengths of
the traditional ones. Has the increased coverage
of the plus-four CIs come at the cost of an undue
increase in their average length?

To show how the expected (or average) lengths
are computed for a particular type of CI, we consider
traditional Cls based on n = 25 subjects. Because the
expected length depends on the value of p, we use
p = 0.30 for an example, as we did in Table 1. Each
value of x = 0, 1, ..., 25 yields its own CI, so we nust
view the length of a CI as a random variable L and
compute E(L).

Table 4, abbreviated to show only a few values
of x, illustrates how to do this. The lower and upper
confidence limits (LCL and UCL, respectively) are
found, as in Table 1, for each value of x. If LCL falls
below 0 or UCL falls above 1, then it is replaced
by 0 or 1, respectively. Next, the length L is found
by subtraction. Finally, the possible values of L
are multiplied by their corresponding probabilities,

and the 26 products are summed to give the
x UCL LCL Length Prob. Product
0 00000 00000 00000 0000 (.0000
1 01168 0.0000 01168 00014 0.0002
2 0.183 00000 0.1863 0.0074 0.0014
3 02474 00000 0.2474 00243 (.0060
4  0.3037 00163 02874 00572 0.0164
5 03568 00432 03136 01030 0.0323
6  0.4074 00726 03348 01472 0.0493
7 0.4560 01040 0.3520 0.1712 0.0603
8 05020 0.1371 03657 0.1651 0.0604
9 05482 01718 03763 0.1336 0.0503
10 05920 02080 03841 Q0916 0.0352
25 1.0000 1.0000 0.0000 0.0000 0.0000

Sum of 26 products = E {length) = 0.3498

Table 4. llustrating the Computation of the Average length of o
Traditional Confidence Interval for n = 25, p=0.30.

expected length. For p=0.30, the traditional CI has
expected length 0.3498.

For values of p in (0,1) and »n=25, Figure 3
shows the average lengths of traditional and plus-
four Cls. Our computation in Table 4 corresponds to
one point on the curve for the traditional Cls.

What can we conclude from Figure 5?7 For extreme
values of p, the plus-four Cls tend to be longer because
the adjusted point estimates £, are nearer 1/2 than are
corresponding estimates £. Recall that the maximum
value of p(1-p) occurs at p=1/2. For values of
P near 1/2, the adjustment does not make much change
in the point estimates, but it does have the effect of
increasing n by 4, and so it decreases the margin of
error and shortens the average CI a litde. The plus-
four adjustment appears to lengthen the Cls for values
of p near 0 or 1 as necessary to achieve roughly 95%
coverage and shorten them for values of p near 1/2
in a way that does no harm. Overall, it seems the
adjustment used to make the 95% plus-four CIs has
resulted in a reasonable tradeoff between coverage
probability and length.

Average Lengths of Traditional (dashes)
and Plus-Four Clis, n=23
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Figure 5. Comparing average lengths of rraditional and plustour
confidence intervals. For p near O ond 1, the plustour infervals are
longer and therefore have coverage probabilities nearer 95%. The
heavy dot shows the average length of the traditional confidence
interval for p = 0.30, as computed in Table 4.



Better, but Not Perfect

The papers by Agresti and Coull and by Brown, Cai,
and Dasgupta have called widespread attention among
professional statisticians to the bad behavior of the
traditional CI for a small or moderate number of rrials.
These papers suggest a number of alternatives to the
traditionat Ci, of which the plus-four CI is recommended
as the simplest to explain and the easiest to compute.
However, the plus-four adjustment is not a magical cure
for every situation. One possible difficuity is at the 999%
confidence level: When p starts to get near 0 or 1, plus-
four CIs are surprisingly conservative, having very high
coverage probabilities and unnecessarily long intervals.
For exampie, see Figure 6, where n = 50. A general
program in R for plotting coverage probabilities against
P is available at www.amstat.org/publications/stats/data.
hbrmi  for those who wish to experiment with variations
(types of Cls, values of n, or confidence levels) of the
graphs shown in this article,

Coverage Probabiitties of Plua-Four Cls: n = 50
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Figure 6. llusiiating the very conservative behavior of 99% plustour
confidence infervals for extreme values of p.

If the number of trials is several hundred or several
thousand, as in many public opinion polls, the plus-four
adjustment makes less difference. However, at the 95%
level, it seems safe and easy just to use the plus-four
interval, regardless of sample size. Recently, authors
of some elementary texis (Moore and Devore, for
example) have discussed and recommended plus-four
Cls, especially when the number of trials is small.

There have been suspicions for some time that
the traditional confidence interval for the binomial
proportion might not perform well, So why has it taken
until recently for statisticians 1o realize how bad it really
is and seriously investigate alternatives? One can only
speculate. However, graphs such as our Figures 2 and 3

carry a message that is instantly recognizable and almost
impossible to ignore. These graphs require hundreds
of thousands of computations. They would not have
been made without modern statistical software or the
imagination of those who figured out how to use such
software to such striking effect. m

Tbis article originated as a student project in a seminar
class ar California State University, East Bay, and is largely
based on class notes and the first three references.
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Technical note:
The purpose of this nole is to indicate a theoreticat
rationale for plustour Cls. In the expression

P{-1.96 = [p-p)/6 =1.96} = 0.95,

one can express G in terms of p, square all
three members of the inequality, and sole a
quadratic equation 1o isolate p, obiaining a Cl
for p that depends on the normal approximation
but does not opproximate p by p to get the
margin of error. The resulting point estimate of p is

X + x2/2)/In+%x2)

and the margin of error is
[x/ln +x2][n p (1 - §) + x2/4]'7,

where X =196 for a 95% Cl and is the value
that cuts 1-¢1/2 from the upper tail of a standard
normat distribution when an inferval with confidence
1-02 is sought. This often is called the Wilson
Cl. The Wilson Cl, with 2 instead of 1.96, is
approximately the 95% plusfour Cl. Accordingly,
the plustour adjusment works best for 5% Cls.



