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Hamlet, Act 3, Scene 1 - Shakespeare
http://server1.hypermart.net/hamlet/course.html (Ian Delaney)

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to su�er
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them? To die: to sleep;
No more; and by a sleep to say we end
The heart-ache and the thousand natural shocks
That 
esh is heir to, 'tis a consummation
Devoutly to be wish'd. To die, to sleep;
To sleep: perchance to dream: ay, there's the rub;
For in that sleep of death what dreams may come
When we have shu�ed o� this mortal coil,
Must give us pause: there's the respect
That makes calamity of so long life;
For who would bear the whips and scorns of time,
The oppressor's wrong, the proud man's contumely,
The pangs of despised love, the law's delay,
The insolence of o�ce and the spurns
That patient merit of the unworthy takes,
When he himself might his quietus make
With a bare bodkin? who would fardels bear,
To grunt and sweat under a weary life,
But that the dread of something after death,
The undiscover'd country from whose bourn
No traveller returns, puzzles the will
And makes us rather bear those ills we have
Than 
y to others that we know not of?
Thus conscience does make cowards of us all;
And thus the native hue of resolution
Is sicklied o'er with the pale cast of thought,
And enterprises of great pith and moment
With this regard their currents turn awry,
And lose the name of action.{Soft you now!
The fair Ophelia! Nymph, in thy orisons
Be all my sins remember'd.



Another quote

\If they would all publish posthumously,

as he did, we would all be better o�"

- quote of unknown origin in reference to

followers of Rev. T. Bayes

Next up: three introductory examples

� mapping of kidney cancer rates

� baseball batting average prediction

� SAT coaching study



Kidney cancer mortality rates

Manton et al. (JASA, 1989)

� Analyses of age-standardized death rates for

cancer of kidney/ureter by U.S. county

� Two maps of estimated rates

{ Direct calculation: use observed rates in

county/age-group cells to form estimates

{ Empirical Bayes: modeling to stabilize

estimated rates



Kidney cancer mortality rates

Manton et al. (JASA, 1989)

� Maps here



Baseball batting averages

Efron & Morris (Sci. Amer., 1975)

Data Inference Outcome

(success rate (success

in �rst 45 (James- rate in rest

attempts Stein) of 1970

Player of 1970) estimate) attempts)

Clemente .400 .290 .346

Robinson .378 .286 .298

Howard .356 .281 .276

Johnstone .333 .277 .222

Berry .311 .273 .273

Spencer .311 .273 .270

Kessinger .289 .268 .263

Alvarado .267 .264 .210

Santo .244 .259 .269

Swoboda .244 .259 .230

Unser .222 .254 .264

Williams .222 .254 .256

Scott .222 .254 .303

Petrocelli .222 .254 .264

Rodriguez .222 .254 .226

Campaneris .200 .249 .285

Munson .178 .244 .316

Alvis .156 .239 .200



SAT coaching study

Rubin (J. Educ. Stat., 1981)

� Randomized experiments in 8 schools

� Separate analyses

� Outcome is SAT-Verbal score

� E�ect of treatment (coaching) estimated

using analysis of covariance

Estimated Standard error

treatment of e�ect Treatment

School e�ect estimate e�ect

A 28 15 ?

B 8 10 ?

C � 3 16 ?

D 7 11 ?

E � 1 9 ?

F 1 11 ?

G 18 10 ?

H 12 18 ?



Bayesian inference: Two key ideas

� Explicit use of probability for quantifying

uncertainty

{ probability models for data given parameters

{ probability distributions for parameters

� Inference for unknowns conditional on

observed data

{ inverse probability

{ Bayes' theorem (hence the modern name)

{ formal decision-making



The Bayesian approach to inference

� A full probability model

{ likelihood p(yj�) = p(data j parameters)

{ prior distribution p(�)

� Posterior inference

{ Bayes' thm to derive posterior distribution

p(�jy) = p(yj�)p(�)
p(y)

=
p(yj�)p(�)R
p(yj�)p(�)d�

{ probability statements about unknowns

{ formal decision-making

� Model checking/sensitivity analysis

{ does the model �t

{ are conclusions sensitive to choice of

prior distn/likelihood



A simple (too simple?) example

� Normal distribution (known variance)

{ Y1; Y2; : : : ; Yn are n independent identically

distributed N(�; �2) random variables

where �2 is known

{ Goal: inference for �

{ Classical approach (frequentist)

� maximum likelihood estimate is

�̂= �Y = 1
n

P
n

i=1 Yi

� 95% con�dence interval: �Y � 1:96 �p
n

� test Ho : � = 0 with Z =
p
n�Y =�

{ Interested in repeated sampling (with �xed �)

properties of procedures

� �Y is unbiased, minimum variance

� CI contains true value 95% of the time

� p-values used to interpret test results



A simple example (cont'd)

� Normal distribution (known variance)

{ Conditional on � we have y = (y1; y2; : : : ; yn)

are n independent identically distributed N(�; �2)

random variables where �2 is known

{ Goal: inference for �

{ Bayesian approach

� prior distribution for � is N(�o; �
2)

with �o; �
2 speci�ed by user (how? why?)

� posterior distribution for � :

�jy � N(�̂; V�)

where

�̂=
�y
�
n

�2

�
+ �o

�
1
�2

�
n

�2
+ 1

�2

and V� =
1

n

�2
+ 1

�2

� inference from posterior distribution

(point estimates, interval estimates, tests)



A simple example (cont'd):

Bayesian inference

� Point estimation

{ given loss function L(�; t(y)) we �nd optimal

Bayes estimate t(y) by minimizing posterior ex-

pected loss

{ e.g.: squared error loss, L(�; t(y)) = (��t(y))2,
leads to t(y) = E(�jy) (posterior mean)

� Interval estimation

{ 95% central posterior interval: �̂� 1:96
q
V�

{ interpretation { what people want to say

{ alternative: highest posterior density interval

� Hypothesis testing (e.g., Ho : �= 0 vs Ha : � > 0)

{ can compute Pr(� > 0jy)
{ formal approach is Bayes factors

� A key point: the Bayesian approach is a way of

generating procedures

{ can then ask about properties, frequentist or

otherwise, of the procedures



A simple example (cont'd):

Interpreting the posterior distribution

� Posterior distribution for � :

�jy1; : : : ; yn � N(�̂; V�)

where

�̂=
�y
�
n

�2

�
+ �o

�
1

�2

�
n

�2
+ 1

�2

and V� =
1

n

�2
+ 1

�2

� Interpretation

{ prior distn and posterior distn are both normal

(conjugate prior family)

{ posterior mean is weighted average of

prior mean and sample mean

(weights = precisions = 1/variance)

{ posterior precision is sum of prior precision and

data precision

{ for any �o; �
2 let n get very large:

�̂ � �y and V� � �
2
=n

(the posterior distn looks like the

traditional sampling distn)



Bayesian calculation

� Di�culty in calculating posterior distributions made

Bayesian analysis impractical (except in simple

problems) for a long time

� Recent advances in computational algorithms have

essentially eliminated this problem

� Today, brief remarks on calculation as

time permits

� For our normal example:

p(�jy) =
p(yj�)p(�)

p(y)

=

�
1

2��2

�n=2
e
�

1

2�2

P
n

i=1

(yi��)
2 � 1

2�� 2

�1=2
e
�

1

2�2
(���o)

2

R
1

�1

�
1

2��2

�
n=2

e
�

1

2�2

P
n

i=1

(yi��)2
�

1

2�� 2

�1=2
e
�

1

2�2
(���o)2d�

/ exp

 
�

1

2�2

nX
i=1

(yi � �)2 �
1

2�2
(�� �o)

2

!

{ can do the integral in denominator or

use following shortcut

� consider only terms involving � (last line)

� note last line is quadratic in � in exponent

� conclude posterior distribution is normal

� identify mean and variance



Prior distributions

� Where do prior distributions come from?

� Subjective prior distributions

{ \honest" prior opinion

{ elicit prior distn from experts

� Conjugate prior distributions

{ prior distribution/likelihood pairs such that prior

distn and posterior distn are from same family

(e.g., normal/normal in the example)

{ mathematically convenient

{ may be a bit limiting (but can use mixtures)

� Noninformative prior distns (more to come)

� Large samples: likelihood dominates the prior distn



Noninformative prior distns:

An interesting result for our example

� Posterior distribution for � :

�jy1; : : : ; yn � N(�̂; V�)

where

�̂=
�y
�
n

�2

�
+ �o

�
1
�2

�
n

�2
+ 1

�2

and V� =
1

n

�2
+ 1

�2

� For given �o; n let �2 get very large:

�̂! �y and V� ! �
2
=n

(the posterior distn looks like the

traditional sampling distn)

� Normal prior distn with \in�nite" �2 appears to

add no information to the likelihood

� Remarks

{ obtain same posterior mean (�y) and variance

(�2=n) with p(�) = Unif(�1;�1) as prior distn

(but this is not a proper distn)

{ an improper prior distribution can lead to a

proper posterior distribution but won't always

{ the 
at (uniform) prior distn is known as a

non-informative prior distn for this example



Noninformative prior distributions

� Often attempt to portray prior ignorance

� Sometimes referred to as \objective" Bayes

� Frequently 
at prior distributions

(but on what scale?)

� Resulting distns may be improper

� Di�culty with an improper prior distn:

need to check that the posterior distn is proper

� Alternative is to use a proper prior distribution

with large variance

� One di�culty with noninformative prior distns:

the concept of noninformative is not well de�ned



Lessons from the simple example

� Bayesian analysis combines information from data

and prior distn

� For large samples: Bayesian analysis is

approximately the same as the classical analysis

� For 
at prior distn: Bayesian analysis is essentially

the same as the classical analysis

� Why be Bayesian?

� Let's make things a bit more sophisticated



SAT coaching study:

A normal-normal hierarchical model

(a.k.a. a random e�ects model)

� Separate randomized experiments in 8 high schools

� Treatment is local SAT coaching program

� Outcome is SAT-Verbal score (200 to 800)

� Treatment e�ect estimated using analysis of

covariance to adjust for PSAT (preliminary SAT)

SAT = �0+ �1 PSAT + �2 Trt

� Separate regression done for each school

� Notation:

{ quantities of interest �j: average e�ects of

coaching programs

{ data yj: separate estimated treatment

e�ects (�̂2)

{ standard errors �j



SAT coaching study: Data and model

Estimated Standard error Average

treatment of e�ect treatment

School e�ect, yj estimate, �j e�ect, �j
A 28 15 ?

B 8 10 ?

C � 3 16 ?

D 7 11 ?

E � 1 9 ?

F 1 11 ?

G 18 10 ?

H 12 18 ?

� Model overview

{ data model / likelihood:

yjj�j
ind� N(�j; �

2
j
), for j = 1; : : : ;8

with �
2
j
's assumed known

{ prior distn: �jj�; �2
iid� N(�; �2) for j = 1; : : : ;8

{ hyperprior distribution: p(�; �2) / 1=�



SAT coaching study: Model

� Data model / likelihood:

yjj�j
ind� N(�j; �

2
j
), for j = 1; : : : ; 8

with �
2
j
's assumed known

{ normality and known variance justi�ed by large

sample size in each school

� Prior distribution: �jj�; �2
iid� N(�; �2) for j = 1; : : : ;8

{ exchangeable prior distn for �j's

{ traditional random e�ects model

� note � ! 0 reduces to complete pooling

� note � !1 reduces to separate estimates

{ frequentists also use this model

� don't call this a prior distn

� don't usually consider �j's as being of interest

� Hyperprior distribution: p(�; �2) / 1=�

{ an improper, \noninformative" prior distn

{ equivalent to p(�; �) / 1



SAT coaching study:

Preliminary data analysis

� Consider the 8 programs separately

{ two programs appear to work (18-28 points)

{ four programs appear to have a small e�ect

{ two programs appear to have negative e�ects

{ large standard errors imply overlapping CIs

� A pooled estimate

{ classical test fails to reject hypothesis that

all �j's are equal

{ pooled estimate =
P

j(yj=�
2
j
)=
P

j(1=�
2
j
) = 7:9

(standard error is 4.2)

{ pooled estimate applies to each school

� Neither separate nor pooled estimates seem right

� We will see that the hierarchical model provides a

compromise between the two estimates



SAT coaching study:

Bayesian computation

� Joint posterior distribution:

p(�; �; � jy)
/ p(yj�)p(�j�; �)p(�; �)

/
8Y

j=1

N(yjj�j; �2j )
8Y

j=1

N(�jj�; �2)

/ �
�8 exp

2
4�1
2

X
j

1

�2
(�j � �)2

3
5 exp

2
4�1
2

X
j

1

�2
j

(yj � �j)
2

3
5

� Factors that depend only on y and f�jg are treated
as constants because they are known

� Joint posterior distn has 10 parameters ...

don't recognize it as any known 10-dim distn



SAT coaching study:

Bayesian computation (cont'd)

� Computational approaches include:

{ approximation

� normal approximation to posterior distn

� \empirical" Bayes methods: estimate � and

�
2 and then proceed as in simple example

{ simulation: approximate the posterior distn

with a random sample from the distn

� Gibbs sampling (a Markov chain Monte Carlo

(MCMC) approach)

� use sequence of full conditional posterior

distns (� given others, �2 given others, etc.)

� in this case each full conditional distn is easy
to recognize

� software available (BUGS Project at

www.mrc-bsu.cam.ac.uk/bugs/welcome.html)

� more in next hour's tutorial

� hierarchical computation provides an

alternative here (see next slide)



SAT coaching study:

Bayesian computation (cont'd)

� Hierarchical computation - note that we can write

p(�; �; �2jy) = p(�2jy)p(�j�2; y)p(�j�; �2; y)
where

{ �rst term is messy but one-dimensional

{ second term turns out to be normal

{ third term is just like our simple example

(normal observation yj with unknown

mean �j and normal prior distn for �j)

� To simulate from joint posterior distribution p(�; �; � jy):
1. draw � from p(� jy) (grid approximation)

2. draw � from p(�j�; y) (normal distribution)
3. draw � = (�1; : : : ; �8) from p(�j�; �; y)

(independent normal distribution for each �j)

� Repeat 1000 times to obtain 1000 simulations
Posterior simulations

Simulation of model parameters

draw � � �1 : : : �8

1 x x x x x

2 x x x x x
... x x x x x

1000 x x x x x



SAT coaching study:

Sample program

� S-plus code listing here



SAT coaching study:

Results

� graph of p(� jy)

� histogram of posterior draws of �



SAT coaching study:

Results

� histogram of posterior draws of �0s (A, C, E, max)



SAT coaching study: Results

Posterior quantiles Estimates

School 2:5% 25% 50% 75% 97:5% pooled separate

A � 2 6 10 16 32 8 28

B � 5 4 8 12 20 8 8

C �12 3 7 11 22 8 � 3

D � 6 4 8 12 21 8 7

E �10 2 6 10 17 8 � 1

F � 9 2 6 10 19 8 1

G � 1 6 10 15 27 8 18

H � 7 4 8 13 23 8 12

� � 2 5 8 11 18

� 0:3 2:3 5:1 8:8 21:0

Discussion:

compare Bayes results to those from

complete pooling and separate analyses



SAT coaching study: Results

We can easily address more complicated inferential

questions:

Pr(school A's e�ect is the max j y) = 0:25

Pr(school B's e�ect is the max j y) = 0:10

Pr(school C's e�ect is the max j y) = 0:10

Pr(school A's e�ect is the min j y) = 0:07

Pr(school B's e�ect is the min j y) = 0:09

Pr(school C's e�ect is the min j y) = 0:17

Pr(sch. A's e�ect > sch. C's e�ect j y) = 0:67



SAT coaching study:

Model checking and sensitivity analysis

� Model checking

{ are results plausible?

{ diagnostics: e.g., is max observed yj what we'd

expect under the model?

� Sensitivity analysis

{ often done by reanalysis with di�erent prior distn

or likelihood

{ e.g., t-distn in place of normal distn for �j's

{ e.g., di�erent prior distn on �

{ in this case we can easily study sensitivity to

the prior distn on � (because � and �j's have

normal distn given � and y)



SAT coaching study:

Sensitivity analysis

� Results for � conditional on �; y here



SAT coaching example: Summary

� Classical estimates (no pooling, complete pooling)

provide starting point for analysis

� Data-determined degree of pooling across studies

� Inference about the individual schools (�j's)

� Inference about the population of schools (�; �2)

� Importance of model checking/sensitivity analysis



Other common hierarchical models

� Poisson-Gamma model

{ data are modeled as Poisson counts

(e.g., disease counts in di�erent counties)

{ Poisson mean (or rate) parameters vary

across observations

{ parameters modeled as a sample from a gamma

population distn

� Binomial-Beta model

{ data are modeled as binomial random variables

(e.g., hits in �rst 45 at-bats)

{ individual probabilities of success vary

{ success parameters modeled as a sample from

a beta population distn



To Bayes or not to Bayes

� To Bayes:

{ use of probability to describe uncertainty

{ there is often a natural prescription for

accommodating modi�cations/complications

(e.g., missing data, handling outliers via t-distn)

{ 
exible inference (e.g., distn on ranks of schools)

{ good frequentist properties

� Not to Bayes:

{ prior distributions are an additional layer

of formalism

{ interpretation of \non-frequentist" probabilities

{ communication with subject area scientists



Additional reading

� Texts:

{ Bayesian Data Analysis - A. Gelman et al.

{ Bayes and Empirical Bayes Methods for Data

Analysis - Carlin and Louis

(both at Chapman and Hall/CRC Press)

� Articles:

{ Efron (1986, American Statistician) \Why isn't

everyone a Bayesian?" (with discussion)

{ Lindley (1990, Statistical Science) \The present

position of Bayesian statistics"

(with discussion)

{ Stern (1998, Stats) \A primer on the Bayesian

approach to statistical inference"

� Contact me: hstern@iastate.edu


