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Introduction

e Bayesian methods have become popular and their
use continues to grow

Science, 19 November 1999 -

A 236-year-old approach to statistics is
making a comeback, as its ability to factor
iIn hunches as well as hard data finds
applications from pharmaceuticals

to fisheries

e Bayesian statisticians need to communicate with
— policymakers and decisionmakers
— researchers in other fields

— classically trained statisticians

e Today: comments based on my experiences
— what do Bayesian methods offer
— some things that are hard to explain
— illustrate via several examples

— summary/conclusions



Terminology

e Bayesian methods
— treat all unknowns as random variables
— condition on observed data
— a.k.a. inverse probability

— '‘Bayesian’ is a relatively recent term

e Non-Bayesian methods

— frequentist? .... but that refers to an
interpretation of probability or an approach
for evaluating procedures

— classical? .... but Bayes published first

— traditional? .... but whose tradition!



What do Bayesian methods have to offer

They make explicit use of probability

T hey allow “flexibility” in inference

Developing/extending models is a natural process

They provide a way to incorporate
prior information

Computational benefits



Ex. 1: linear models in animal breeding

e Animal breeding research

— estimate/predict genetic potential of animals
for one or more trait

— use information from each animal and
its relatives

— select the best animals for breeding

— example today: flour beetles
(Wright, Stern and Berger, JABES 2000)



Ex. 1: linear models in animal breeding

e [ he model
Y =X+ Ziu+ Zrc+ e

—Y vector of n trait measurements

— X = matrix of “fixed” effects (e.g., sex)
— [ = vector of p fixed effect coefficients

— Z71 = incidence matrix for animal effects
— u = vector of N animal random effects

— Z» = incidence matrix for family (env.) effects
— ¢ = vector of ¢ family random effects

— e = vector of random errors

— our example (a small problem):
n=324, N =397, =54,p=06



Ex. 1: linear models in animal breeding

Y =X+ Ziu+ Zrc+ e

e Distributional assumptions

— u~ N(0, 024)
A is known N x N relationship matrix

— ¢~ N(0, ¢2I)
— e~ N(0, ¢2I)

e Normality for « is usually justified by
thinking of “infinitesimal” model

e Normality for e may be achieved by
transformation

e Possible problems/opportunities
— major genes

— outliers (preferential treatments)



Ex. 1: linear models in animal breeding

e Classical approach (REML/BLUP)

— inference for variance components using restricted
maximum likelihood (REML)

— inference for random effects given
variance components

* Solve Henderson’s equations

+ equivalent to maximizing p(u,c, 8|Y, 02)

X'X X'Z X'Zs 3 X'y
ZX W+ ATYS 207 w |=| 21y
ZhX 77 ZhZo+1,% | \ ¢ ZLY

* yields best linear unbiased predictions (BLUP)

* May require solving large system of equations
(can be thousands of rows)



Ex. 1: linear models in animal breeding

e Bayesian approach
— probability model
« p(ylu, ¢, f,0%) = N(y|XB + Z1u+ Zac, 0Zln)
« p(ulog) = N(ul0, 0gA)
« p(clo2) = N(c[0, o21,)

x* p(B) o< 1

« p(02,02,02) x 1/02
x last two are noninformative(?) and improper
prior distributions

— Markov chain Monte Carlo sampling
can be used to study posterior
(Gibbs sampling is easy to
implement for this model)



Ex. 1: linear models in animal breeding

e Triboliun castaneum data (flour beetles)

— n = 324 animals

x one generation out of 16 in study
— N = 397 animals (includes 73 ancestors)

— p =6 ‘fixed effects”
(intercept, gender, date, interactions)

— g = 54 environments

x 6 beetles taken from each mating and raised
in common environment



Ex. 1: linear models in animal breeding

e Variance components

Posterior distribution  Poster.
Parameter 2.5% 50% 97.5% mean REML
o2 757 6301 22919 7781 2253
o2 290 3881 11396 4371 4426
o2 30354 40834 50202 40682 43405
heritability 0.014 0.121 0.398 0.145 0.045



Ex. 1: linear models in animal breeding

e Animal effects are of great interest

— BLUP estimates are posterior means conditional
on REML variance estimates

— full Bayesian posterior means accommodate
uncertainty about variance parameters

— both are motivated by squared error 10Ss

— a key point is that other summaries of the
posterior distn are possible



Ex. 1: linear models in animal breeding

e What do we learn
— flexible inferences (e.g., ranks)

— incorporate prior information at some levels of
the model (i.e., family structure) ... but not at
others

— computationally convenient

e \What questions come up

— defining optimal point estimates
(post. mean, post. median, post. mode)

— role of prior distributions for variances



Ex. 2: estimation of soil texture quantiles

e SoOil texture or composition variables
(e.d., % clay) are important for land management

e Goal: estimate gquantiles of distn of soil texture
variables for 48 inch profile

e Data available
— horizon = layer of soil

— S = surface points (field measurements only
on surface horizon, 6-12 in)

— F = field points (field measurements on all
horizons up to 48 in)

— L = lab points (field and lab data on all horizons
up to 48 in)

— lots of missing data
(e.g., lab measurements on S and F sites)

e Data are from National Cooperative Soil Survey
(NCSS), a USDA /state agencies production

e Ph.D. thesis of P. J. Abbitt (ISU, 1999)



Ex. 2: estimation of soil texture quantiles

e Calibration/imputation approach

— calibration

* linear model used to calibrate field and lab
measurements

* lab measurements modeled as a function of
field measurements (and other variables)
using sites with both types of data

x “predict” lab measurements for sites in S/F

x different models used for different types
of soils



Ex. 2: estimation of soil texture quantiles

e Calibration/imputation approach (cont’'d)

— imputation

x after calibration have complete “lab’ data
except for sites in S

* next impute calibrated lab data for full profile
for sites in S

x regression model to impute inch i's data
using inch 1’'s data as predictor

x different models used for different types
of soils

— quantile function estimator

— variance estimation via jackknife



Ex. 2: estimation of soil texture quantiles

e Hierarchical probability model

— normal linear model relates field measurements
to lab measurements (similar to calibration step)

— |lab measurements model
+* normal distribution

* Site random effect

* Mmean and variance differ by
horizon type (A, B, C)

— horizon profile is a Markov model
(six states at any inch: continue A, start A,
continue B, start B, continue C, start C)

e Bayesian inference via MCMC (priors are vague
distns centered at values based on science)

e Quantile estimates derived from a mixture of
normal (lab measurement) distns with mixture
weights a function of the Markov model probs



Ex. 2: estimation of soil texture quantiles

e Bayesian analysis vs calibration/imputation

— computation is more difficult for the Bayesian
approach

— calibration approach is series of separate steps

— more distributional assumptions for Bayesian
approach (requires more model checking)

— Bayesian approach does not rely on asymptotics

— Bayesian approach provides flexible inference
(more/better output)

— as an example we consider:
quantiles for % clay in Old Alluvium soils



Things that can be hard to explain

Interpretation of probability

The role of prior distns
(and noninformative prior distns)

What is the right point estimate?

How do we test hypotheses?

Computational difficulties



Interpretation of probability

Most people have been (and continue to be) trained
with the frequentist view of probability

A common claim is that people relate more
naturally to the “Bayesian” (subjective?) view,
e.dg., in confidence intervals

This has not always been the case in my
consulting/collaborative experiences

The better-trained the person the more likely this
IS to be a problem



The role of prior distributions

Many want to use the likelihood function as a
distn on parameters (e.g., Fisher’s fiducial
inference) but are unwilling to specify a prior distn

This has always been the most problematic part
for people

Subjective prior distns often worry people

The fact that the prior distn doesn’t matter
much for large sample size helps ....
but not always true in hierarchical models

In practice people are drawn to noninformative
prior distns but ...

— “noninformative” is not well defined

— “*flat” and *vague’” are clear concepts but don’t
always vield noninformative prior distns

— this subject is very confusing to people

Recommendation might be to use vague proper
prior distns and perform a sensitivity analysis



Point estimates

e MLE is the dominant point estimation technique

e [0 get a unique Bayesian point estimate one must
specify a loss function

e Example: animal breeding

Posterior distribution Poster.
Parameter 2.5% 50% 97.5% mean REML

o2 757 6301 22919 7781 2253
o2 200 3881 11396 4371 4426
o2 30354 40834 50202 40682 43405

heritability 0.014 0.121 0.398 0.145 0.045

— REML estimates differ from posterior mean/median

— Why? ML is more like a mode



Testing Hypotheses

e Applied science research is still often dominated
by .05 significance level tests

e Can sometimes be addressed in a Bayesian analysis
by examining 95% posterior interval
(but not always, e.g., variance components)
e Bayes factors are an option
— can be difficult to compute
— sensitive to prior distns
— interpretation?

e [ he best solution is to shift emphasis to
point estimation and posterior intervals



EXx. 3: binary regr with random effects

Natural selection study

244 turtles in 31 families

Response: survival (0/1)

Predictors: birthweight, clutch/family effects

Data collected by Janzen et al. (Ecology, 2000)

It turns out that birthweight is a significant factor

Question: are clutch effects important?



Ex. 3: binary regr with random effects

e Probit model with random effects
(Sinharay and Stern, 2000 technical report)

e Posterior inference

— coefficient of birthweight
* POSt. mean = .38, post.s. d. = .10

* 95% int. = (.18, .59)
— variance component (¢2)
* POSt. mean = .32, post.s. d. = .12
* POSt. mode = .26
* 95% int. = (.16, .61)

e Bayes factor (simple probit model vs probit with
random effects): 3.25

e Bayes factor is sensitive to the prior on ¢2

e Conclude variance parameter is not significant



Summary/Conclusions

e Need to emphasize the difference between
procedure development and procedure evaluation

e Outlook for increased use of Bayesian procedures
IS good

— flexible inference

— natural to develop/extend models
(e.g., missing data)

— success stories continue to develop

e Cautions
— need to educate as we work

— more work to be done on
model checking/sensitivity analysis

— these are generally not black-box
procedures, we need to work with scientists



