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Introduction to Bayesian Estimation

Some important applications of Bayesian statistical inference rely on compu-
tational methods. In particular, Chapters ??-XX of this book illustrate the
computational role of the Gibbs sampler in Bayesian estimation. By way of
preparation, this chapter introduces some fundamental Bayesian concepts.

Bayesian and frequentist statistical inference take very different approaches
to statistical decision making.

• The frequentist view of probability, and thus of statistical inference, is
based on the idea of an experiment that can be repeated many times.

• The Bayesian view of probability and of inference is based on a personal
assessment of probability and on observations from a single performance
of an experiment.

These fundamentally different views lead to different procedures of estimation
and of interpretation of the resulting estimates. In practical applications, both
ways of thinking have advantages and disadvantages, some of which we will
explore here.

Statistics is a relatively young science. For example, interval estimation
and hypothesis testing have become common in scientific research and business
decision making only within the past 75 years, and then only gradually. On
this time scale it seems strange to talk about “traditional” approaches. But
frequentist viewpoints are currently much better established, particularly in
scientific research, than Bayesian ones. Recently, the use of Bayesian methods
has been increasing, partly because the Bayesian approach seems to be able to
get more useful solutions than frequentist ones in some applications and partly
because improvements in computation have made Bayesian methods more
convenient to apply in practice. The Gibbs sampler is one computationally
intensive method that is broadly applicable in Bayesian estimation.

For some of the very simple examples considered here, Bayesian and fre-
quentist methods give similar results. But that is not the main point. We
hope you will gain some appreciation that Bayesian methods are sometimes
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the most natural and useful ones in practice. Also, we hope you will begin to
appreciate the essential role of computation in Bayesian estimation.

For most people, the starkest contrast between frequentist and Bayesian
approaches to analyzing an experiment or study is that Bayesian inference
provides the opportunity—even imposes the requirement—to take explicit
notice of “information” that is available before any data are collected. That
is where we begin.

2.1 Prior Distributions

The Bayesian approach to statistical inference treats population parameters as
random variables (not as fixed, unknown constants). The distributions of these
parameters are called prior distributions. Often both expert knowledge and
mathematical convenience play a role in selecting a particular type of prior
distribution. This is easiest to explain and to understand in terms of examples.
Here we introduce three examples that we carry through subsequent sections
of this chapter.

Example 2.1.1 Election polling. Suppose Proposition A is on the ballot
for an upcoming statewide election, and a political consultant has been hired
to help manage the campaign for its adoption. The proportion π of prospec-
tive voters who currently favor Proposition A is the population parameter of
interest here. Based on her knowledge of the politics of the state, the consul-
tant’s judgment is that the proposition is almost sure to pass, but not by a
large margin. She believes that the most likely proportion of voters in favor
is 55% and that the percentage is not likely to be below 51% or above 59%.

It is reasonable to consider the beta distribution to model the expert’s
opinion of the proportion in favor because distributions in the beta family
take values in the interval (0, 1) as do proportions. This family of distributions
has density functions of the form

p(π) = Kπα−1(1− π)β−1

∝ πα−1(1− π)β−1,

for 0 < π < 1, where α, β > 0 and K is the norming constant such that∫ 1

0
p(π) dπ = 1. Here we adopt two conventions that are common in Bayesian

discussions: the use of the letter p instead of f to denote a density function,
and the use of the symbol ∝ (read “proportional to”) instead of = so that
we can avoid specifying a constant whose exact value is unimportant to the
discussion. The essential factor of the density function that remains when the
constant is suppressed is called the kernel of the density function (or of its
distribution).

A member of the beta family that corresponds reasonably well to the ex-
pert’s opinion has α0 = 330 and β0 = 270. (See the broken curve in Figure 2.1.)
This is a reasonable choice of parameters for several reasons.
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• This beta distribution is centered near 0.55 = 55% by any of the common
measures of centrality. By analytic methods one can show that the mean
of this distribution is α0/(α0 + β0) = 330/600 = 55.00% and that its
mode is (α0 − 1)/(α0 + β0 − 2) = 329/598 = 55.02%. Computational
methods show the median to be 55.01%. (The S-Plus function qbeta(.5,
330, 270) returns 0.5500556.) In ???? we discuss criteria for selecting
which measure of centrality to use, but here it doesn’t make any practical
difference.

• Also, numerical integration shows that these parameters match the ex-
pert’s prior probability interval fairly well: P{0.51 < π < 0.59} ≈
0.95. (In S-Plus, pbeta(.59, 330, 270) - pbeta(.51, 330, 270) re-
turns 0.9513758.)

Of course, slightly different choices for α0 and β0 would match the expert’s
opinion about as well. It is not necessary to be any fussier in choosing the
parameters than the expert was in specifying her hunches. Also, distributional
shapes other than the beta might match the expert’s opinion just as well. But
we choose a member of the beta family because it makes the mathematics
relatively easy in what comes later and because we have no reason to believe
that the shape of our beta distribution is inappropriate here. (See Problems 2.1
and 2.3.)

If the consultant’s judgments about the political situation are correct, then
they may be helpful in managing the campaign. If she too often brings bad
judgment to her clients, her reputation will suffer and she will be out of the
political consulting business before long. Fortunately, as we will see in the
next section, the details of her judgments become less important if we also
have some polling data to rely upon. ♦

Example 2.1.2 Weighing an object. A construction company buys rein-
forced concrete beams with a nominal weight of 700 lb. Experience with a
particular supplier of these beams has shown that their beams very seldom
weigh less than 680 or more than 720 lb. In these circumstances it may be
convenient and reasonable to use NORM(700, 10) as the prior distribution of
the weight of a randomly chosen beam from this supplier.

Usually, the exact weight of a beam is not especially important, but there
are some situations in which it is crucial to know the weight of a beam more
precisely. Then a particular beam is selected and weighed several times on a
scale in order to determine its true weight more accurately.

Theoretically, a frequentist statistician would ignore “prior” or background
experience in doing statistical inference, basing statistical decisions only on
the data collected when a beam is weighed. In real life it is not so simple.
For example, the design of the weighing experiment will very likely take past
experience into account in one way or another. (For example, if you are going
to be weighing things you need to know whether you’ll be using a laboratory
balance, a truck scale, or some intermediate kind of scale. And if you need
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Fig. 2.1. Prior and posterior densities for the proportion of the population in favor
of ballot Proposition A (see Examples 2.1.1 and 2.2.1). The prior (broken curve) is
BETA(330, 270) with mean 55.0%. Based on a poll of 1000 subjects with 62.0% in
favor, the more concentrated posterior (solid) is BETA(950, 650) with mean 59.5%

more precision than the scale will give in a single measurement, you may need
to weigh each object several times and take the average.) For the Bayesian
statistician the explicit codification of some kinds of background information
into a prior distribution is a required first step. ♦

Example 2.1.3 Counting mice. An island in the middle of a river is one
of the last known habitats of an endangered kind of mouse. The mice rove
about the island in ways that are not fully understood and so are taken as
random.

Ecologists are interested in the average number of mice to be found in
particular regions of the island. To do the counting in a region they set many
traps there at night, using bait that is irresistible to mice at close range. In
the morning they count and release the mice caught. It seems reasonable to
suppose that almost all of the mice in the region around the trap during the
previous night were caught and that the number of them on any one night has
a Poisson distribution. The purpose of the trapping is to estimate the mean
λ of this distribution.
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Fig. 2.2. Prior and posterior densities for the proportion of the population favoring
Proposition B (see Problem 2.2). Here the prior (thin curve) reflects strong optimism
that the proposition is leading. The posterior (thick), taking into account results of
a relatively small poll with 62% opposed, does little to dampen the optimism.

Even before the trapping is done the ecologists doing this study have some
information about λ. For example, even though the mice are quite shy, there
have been occasional sightings of them in almost all regions of the island, so it
seems likely that λ > 1. On the other hand, from what is known of the habits
of the mice and the food supply in the regions, it seems unlikely that there
would be as many as 25 of them in any one region at a given time.

In these circumstances, it seems reasonable to use a gamma distribution
as a prior distribution for λ. This gamma distribution has the density

p(λ) ∝ λα−1e−κλ,

for λ > 0, where the shape parameter α and the rate parameter κ must both
be positive. First, we choose a gamma distribution because it puts all of its
probability on the positive half line, and λ must surely have a positive value.
Second, we choose a member of the gamma family because it simplifies some
important computations that we need to do later.

Using straightforward calculus, one can show that a distribution in the
gamma family has mean α/κ, mode (α − 1)/κ, and variance α/κ2. These
distributions are right-skewed, with the skewness decreasing as α increases.
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Let’s see what happens if we choose a gamma density with α0 = 4 and
κ0 = 1/3 as a prior distribution for λ. Reflecting the skewness, the mean 12,
median 11.02, and mode 9 are noticeably different. (We obtained the median
using S-Plus: qgamma(.5, 4, 1/3) returns 11.01618.) Numerical methods
also show that P{λ < 25} = 0.97. (In S-Plus, pgamma(25, 4, 1/3) returns
0.9662266.) All of these values are consistent with the the expert opinions of
the ecologists.

It is clear that the experience of the ecologists with the island and its en-
dangered mice will influence the course of this investigation in many ways: di-
viding the island into meaningful regions, modelling the randomness of mouse
movement as Poisson, deciding how many traps to use and where to place
them, choosing a kind of bait that will attract mice from a region of interest
but not from all over the island, and so on. The expression of some of their
background knowledge as a prior distribution is perhaps a relatively small use
of their expertise. But a prior distribution is a necessary starting place for
Bayesian inference, and it is perhaps the only aspect of expert opinion that
will be explicitly tempered by the data that are collected. ♦
Example 2.1.4 Precision of hemoglobin measurements. A hospital has
just purchased a device for the assay of hemoglobin (Hgb) in the blood of
newborn babies (in g/dl). Considering the claims of the manufacturer and
experience with competing methods of measuring Hgb, it seems reasonable
to suppose the machine gives unbiased normally distributed results X with a
standard deviation σ somewhere between 0.25g/dl and 1g/dl.

For mathematical convenience in Bayesian inference, it is customary to
express prior distributions for the variability of a normal distribution in terms
of a gamma distribution on the precision τ = 1/σ2. Thus the precision is the
reciprocal of the variance. In our example, we might seek a prior distribution
on τ with P{1/4 < σ < 1} = P{1/16 < σ2 < 1} = P{1 < τ < 16} = 0.95.
One reasonable choice is τ ∼ GAMMA(α0 = 3, κ0 = 0.75), under which this
interval has probability 0.96.

When τ has a gamma prior GAMMA(α, κ), we say that θ = 1/τ = σ2 has
an an inverse gamma prior distribution IG(α, κ). This distribution family
has density

p(θ) =
κα

Γ (α)
θ−(α−1) e−κ/α ∝ θ−(α−1) e−κ/α,

for θ > 0; mean κ/(α− 1), for α > 1; and mode κ/(α + 1).
In S-Plus simulated values and quantiles of IG can be found as reciprocals

of rgamma and qgamma, respectively. Cumulative probabilities can be found by
using reciprocal arguments in pgamma. For example, with α0 = 3, κ0 = .75, we
find Med(τ) = 1/Med(θ) = 0.28047 with the code 1/qgamma(.5, 3, .75),
and we verify this result when pgamma(1/0.28047, 3, .75) returns 0.50001.
♦
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2.2 Data and Posterior Distributions

The second step in Bayesian inference is to collect data and to combine the
information in the data with the expert opinion represented by the prior dis-
tribution. The result is a posterior distribution that can be used for inference.

Once the data are available, we can use Bayes’ Theorem to compute the
posterior distribution π|x. Equation (??), repeated here as (2.1), states an
elementary version of Bayes’ Theorem for an observed event E and a partition
{A1, A2, . . . , Ak} of the sample space S.

P (Aj |E) =
P (Aj)P (E|Aj)∑k
i=1 P (Ai)P (E|Ai)

. (2.1)

This equation expresses a posterior probability P (Aj |E) in terms of the prior
probabilities P (Ai) and the conditional probabilities P (E|Ai).

Here we use a more general version of Bayes’ Theorem involving data x
and a parameter π:

p(π|x) =
p(π)p(x|π)∫
p(π)p(x|π) dπ

∝ p(π)p(x|π), (2.2)

where the integral is taken over all values of π for which the integrand is
possible. The proportionality symbol ∝ is appropriate because the integral is
a constant. (In case the distribution of π is discrete, the integral is interpreted
as a sum.)

Thus the posterior distribution of π|x is found from the prior distribution
of π and the distribution of the data x given π. If π is a known constant,
p(x|π) is the density function of x; we might integrate it with respect to x to
evaluate the probability P (x ∈ A) =

∫
A
p(x) dx. However, when we use (2.2)

to find a posterior, we know the data x, and we view p(x|π) as a function
of π. When viewed in this way, p(x|π) is called the likelihood function of π.
(Technically, the likelihood function is defined only up to a positive constant.)

A convenient summary of of our procedure for finding the posterior distri-
bution with relationship (2.2) is to say

POSTERIOR ∝ PRIOR× LIKELIHOOD.

We now illustrate this procedure for each of the examples of the previous
section.

Example 2.2.1 Election Polling (continued). Suppose that n randomly
selected registered voters express opinions on Proposition A. What is the
likelihood function, and how do we use it to find the posterior distribu-
tion? If thevalue of π were known, the number x of the respondents in
favor of Proposition A is a random variable with the binomial distribution:
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(n
x) πx(1 − π)n−x, for x = 0, 1, 2, . . . , n. Now that we have data x, the

likelihood function of π becomes p(x|π) ∝ πx(1− π)n−x.
Display (2.2) gives the posterior distribution

p(π|x) ∝ πα0−1(1− π)β0−1 × πx(1− π)nx

∝ πα0+x−1(1− π)β0+nx−1,

where we recognize the last line as the kernel of a beta distribution with
parameters αn = α0 + x and βn = β0 + n− x. It is easy to find the posterior
in this case because the (beta) prior distribution we selected has a functional
form that is similar to that of the (binomial) distribution of the data, yielding
a (beta) posterior. In this case we say that the beta is a conjugate prior for
binomial data.

Recall that the parameters of the prior beta distribution are α0 = 330 and
β0 = 270. If x = 620 of the n = 1000 respondents favor Proposition A, then
the posterior has a beta distribution with parameters αn = α0 + x = 950 and
βn = β0 + n − x = 650. Look at Figure 2.1 for a visual comparison of the
prior and posterior distributions. The density curves were plotted with the
following S-Plus script. (Using lines is one way to plot more than one curve
on the same axes.)

x <- seq(.45, .7, .001)

prior <- dbeta(x, 330, 270); post <- dbeta(x, 950, 650)

plot(x, post, type="l", ylim=c(0, 35),

xlab="Proportion in Favor", ylab="Density")

lines(x, prior, lty=4)

The posterior mean is 950/(950+650) = 59.4%, a Bayesian point estimate
of the actual proportion of the population currently in favor of Proposition A.
Also, according to the posterior distribution, P{0.570 < π < 0.618} = 0.95,
so that a 95% posterior probability interval for the proportion in favor is
(57.0%, 61.8%). (In S-Plus, qbeta(.025, 950, 650) returns 0.5695848, and
qbeta(.975, 950, 650) returns 0.6176932.)

This probability interval resulting from Bayesian estimation is a straight-
forward probability statement. Based on the combined information from her
prior distribution and from the polling data, the political consultant now be-
lieves it is very likely that between 57% and 62% of the population currently
favors Proposition A. In contrast to a frequentist “confidence” interval, the
consultant can use the probability interval without the need to view the poll
as a repeatable experiment. ♦

Example 2.2.2 Weighing a beam (continued). Suppose that a particular
beam is selected from among the beams available. Recall that, according to our
prior distribution, the weights of beams in this population is NORM(700, 10),
so µ0 = 700 pounds and σ0 = 10 pounds. The beam is weighed n = 5 times on
a balance that gives unbiased, normally distributed readings with a standard
deviation of σ = 1 pound. Denote the data by x = (x1, . . . , xn), where the xi
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Fig. 2.3. Prior density and posterior density for the weight of a beam. The normal
prior (broken curve) is so flat that the normal posterior (solid spike) is overwhelm-
ingly influenced by the data, obtained by repeated weighing of the beam on a scale
of relatively high precision. (See Examples 2.1.2 and 2.2.2, and Problem 2.8.)

are independent NORM(µ, σ), and µ is the parameter to be estimated. Such
data have the likelihood function

p(x|µ) ∝ exp

[
− 1

2σ2

n∑

i=1

(xi − µ)2
]

,

where the distribution of µ is determined by the prior, and σ = 1 is known.
Then after some algebra (see Problem 2.7), the posterior is

p(µ|x) ∝ p(µ)p(x|µ) ∝ exp[−(µ− µn)2/2σ2
n],

which is the kernel of NORM(µn, σn), where

µn =
1

σ2
0
µ0 + n

σ2 x̄

1
σ2
0

+ n
σ2

and σ2
n =

1
1

σ2
0

+ n
σ2

.

It is common to use the term precision to refer to the reciprocal of a
variance. If we define τ0 = 1/σ2

0 , τ = 1/σ2, and τn = 1/σ2
n, then we have
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µn =
τ0

τ0 + nτ
µ0 +

nτ

τ0 + nτ
x̄ and τn = τ0 + nτ.

Thus, we say that the posterior precision is the sum of the precisions of the
prior and the data, and that the posterior mean is a precision-weighted average
of the means of the prior and the data.

In our example, τ0 = 0.01, τ = 1, and τn = 5.01. And the weights are
0.01/5.01 ≈ 0.002 for the prior mean and 5/5.01 ≈ 0.998 for the mean of the
data. Thus, the posterior precision is almost entirely due to the precision of
the data, and the value of the posterior mean is almost entirely due to the
mean of the sample. In this case, the sample of five relatively high-precision
observations is enough to concentrate the posterior and diminish the impact
of the prior. (See Problem 2.8 and Figure 2.3 for the computation of the
posterior mean and a posterior probability interval.) ♦
Example 2.2.3 Counting mice (continued). Suppose that a region of the
island is selected where the gamma distribution with parameters α0 = 4 and
κ0 = 1/3 is a reasonable prior for λ. The prior density is p(λ) ∝ λα0−1e−κ0λ.

Over a period of about a year, traps are set out on n = 50 nights with
the total number of captures t =

∑50
i=1 xi = 256 for an average of 5.12 mice

captured per night. Thus the Poisson likelihood function of the data is

p(x|λ) ∝
n∏

i=1

λxie−λ = λte−nλ,

and the posterior distribution is

p(λ|x) ∝ λα0−1e−κ0λ × λte−nλ

= λα0+t−1e−(κ0+n)λ,

in which we recognize the kernel of the gamma distribution with parameters
αn = α0 + t and κn = κ0 +n. Thus the posterior mean for our particular prior
and data is

αn

κn
=

α0 + t

κ0 + n
=

4 + 256
1/3 + 50

=
260

50.33
= 5.17.

Based on this posterior distribution, a 95% probability interval for λ is
(4.56, 5.81). (In S-Plus, qgamma(.025, 260, 50.33) returns 4.557005, and
qgamma(.975, 260, 50.33) returns 5.812432.) The prior and posterior den-
sities are shown in Figure ??. ♦
Example 2.2.4 Precision of hemoglobin measurements (continued).
Suppose researchers use the new device to make Hgb determinations vi on
blood samples from n = 42 randomly chosen newborns, and also make ex-
tremely precise corresponding laboratory determinations wi on the same sam-
ples. Based in part on assumptions in Example ??, we assume xi = vi−wi ∼
NORM(0, σ). Assuming the laboratory measurements to be of “gold standard”
quality, we ignore their errors and take τ = 1/σ2 to be a useful measure of the
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precision of the new device. If we observe s =
√∑

i x2
i /n = 0.34 and use the

prior distribution τ ∼ GAMMA(3, 0.75) of Example 2.1.4, then what posterior
probability intervals can we give for τ and for σ?

The likelihood function of the data x = (x1, . . . , xn) is

p(x|θ) ∝
n∏

i=1

θ−1/2 exp
(−x2

i

2θ

)
= θ−n/2 exp

(−ns2

2θ

)
,

where we denote σ2 = θ, and the posterior distribution is

p(θ|x) ∝ θ−(α0+1) exp
(−κ0

θ

)
× θ−n/2 exp

(−ns2

2θ

)

= θ−(αn+1) exp
(−κn

θ

)
,

where αn = α0 + n/2 and κn = κ0 + ns2/2. We recognize this as the kernel
of the IG(αn, κn) density function. Notice that the posterior has a relatively
simple form because θ appears in the denominator of the exponential of the
inverse-gamma prior. (If we had used a gamma prior for θ, then θ would have
appeared in the numerator of the exponential, making the posterior density
unwieldy.)

For our data αn = 3 + 42/2 = 24 and κn = 0.75 + 42(0.34)2/2 = 3.178,
so that a 95% posterior probability interval for τ is (4.84, 10.86), com-
puted in S-Plus as qgamma(c(.025, .975), 24, 3.18). The correspond-
ing interval for σ is (0.303, 0.455). The frequentist 95% confidence inter-
val for σ =

√
θ based on ns2/θ ∼ CHISQ(n) is (0.280, 0.432), computed

as sqrt(42*(.34)^2/qchisq(c(.975,.025), 42)). Roughly speaking, we
can think of the prior distribution as contributing information equivalent
to 2α0 = 6 observations to the posterior with κ0 =

∑
x2

i = 0.75 or
s0 =

√
0.75/6 = 0.354 and thus nearly agreeing with the data s = 0.34.

The gamma prior and posterior distributions for the precision τ are shown in
Figure ?? for τ in the interval (1, 16).
Notes: (1) Because the normal mean is assumed known, µ = 0, we have ns2/σ2 =∑

(xi − µ)2/σ2 =
∑

x2
i /σ2 distributed as chi-squared with n (not n− 1) degrees of

freedom. (2) This example is loosely based on a real situation reported in [XXXX]

and used as an extended example in [YYYY]. In this study, s = 0.34 based on n = 42

subjects. Complications in practice are that readings from the new device appear to

be slightly biased and that the laboratory determinations, while more precise than

those from the new device, are hardly free of measurement error. Fortunately, in this

clinical setting the precision of both kinds of measurements is much better than it

needs to be. ♦
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2.3 Problems

2.1 In practice, the beta family of distributions offers a rich variety of
shapes for modeling priors to match expert opinion.

a) Beta densities p(π) are defined on the open unit interval. Show that pa-
rameter α controls behavior of the density function near 0. In particular,
find the value p(0+) and the slope p′(0+) in each of the following five
cases: α < 1, α = 1, 1 < α < 2, α = 2, and α > 2. Evaluate each limit as
being 0, positive and finite, ∞, or −∞. (As usual, 0+ means to take the
limit as the argument approaches 0 through positive values.)

b) By symmetry, parameter β controls behavior of the density function
near 1. Thus, combinations of the parameters yield 25 cases, each with its
own “shape” of density. In which of these 25 cases does the density have a
unique mode in (0, 1)? The number of possible inflection points of a beta
density curve is 0, 1, or 2. For each of the 25 cases, give the number of
inflection points.

c) The S-Plus script below plots examples of each of the 25 cases, scaled
vertically (with top) to show the properties in parts (a) and (b) about as
well as can be done and yet show most of each curve. Compare this matrix
of plots with your results above (α-cases are rows, β-cases are columns).
In this display, which three of the 25 densities can be made asymmetrical
by choosing α 6= β?

alpha <- c(.5, 1, 1.2, 2, 5); beta <- alpha

par(mfrow=c(5, 5)) # Formats 5 x 5 matrix of plots

x <- seq(.001, .999, .001)

for (i in 1:5)

{

for (j in 1:5) {

top <- .2 + 1.2 * max(dbeta(c(.05, .2, .5, .8, .95),

alpha[j], beta[i]))

plot(x,dbeta(x, alpha[i], beta[j]),

type="l", ylim=c(0, top), xlab="", ylab="") }

}

par(mfrow=c(1, 1)) # Restores single-plot parameters

2.2 In a situation similar to Example 2.1.1, suppose a political consultant
chooses the prior BETA(380, 220) to reflect his assessment of the proportion
of the electorate favoring Proposition B.

a) In terms of a most likely value for π and a 95% probability interval for π,
describe this consultant’s view of the prospects for Proposition B.

b) Recall that in Example 2.2.1 a poll of 1000 subjects showed 62% in fa-
vor of Proposition A. Here, if a poll of 100 randomly chosen registered
voters shows 62% opposed to Proposition B, do you think the consul-
tant (a believer in Bayesian inference) will now fear Proposition B will
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fail? Quantify your answer with specific information about the posterior
distribution. (See Figure 2.2.)

c) Modify the S-Plus code of Example 2.2.1 to make your own version of
Figure 2.2.

d) Pollsters often quote the margin of sampling error for a poll based on
n subjects as roughly 100/

√
n %. According to this formula, what is the

(frequentist’s) margin of error for the poll in part (b)? How do you suppose
the formula is derived?

Hints: (a) Use S-Plus code qbeta(c(.025,.975), 380, 220) to find one 95% prior

probability interval. (b) One response: P{π < 0.55} < 1%. (c) A standard formula

for an approximate 95% confidence interval is p̂ ± 1.96
√

p̂(1− p̂)/n, where n is

“large” and p̂ is the sample proportion in favor. Roughly, what if 0.35 < p̂ < 0.65?

2.3 In Example 2.1.1, we require a prior distribution with E(π) ≈ 0.55 and
P{0.51 < π < 0.59} ≈ 0.95. How might we find suitable parameters α and β
for such a beta distributed prior?

a) For a beta distribution, the mean is µ = α/(α + β), and the variance is
σ2 = αβ/[(α + β)2(α + β + 1)]. Also, for unimodal and roughly symmet-
rical distributions on π the Empirical Rule states that P{µ − 2σ < π <
µ + 2σ} ≈ 0.95. Use these facts to find approximate values of α and β
satisfying the requirements.

b) The following S-Plus script finds integer values of α and β that may come
close to satisfying the requirements, and then checks to see how well they
succeed.

alpha <- 1:2000 # Trial values of alpha

beta <- .818*alpha # Corresponding values of beta

# Vector of probabilities for interval (.51, .59)

prob <- pbeta(.59, alpha, beta) - pbeta(.51, alpha, beta)

prob.err <- abs(.95 - prob) # Errors for probabilities

# Results: Target parameter values

t.al <- alpha[prob.err==min(prob.err)]

t.be <- round(.818*t.alpha)

t.al; t.be

# Checking: Achieved mean and probability

a.mean <- t.al/(t.al + t.be)

a.mean

a.prob <- pbeta(.59, t.al, t.be) - pbeta(.51, t.al, t.be)

a.prob

What assumptions about α are inherent in the script? Why do we use
β = 0.818α? What values of α and β are returned? For integer values of
the parameters, how close do we get to the desired values of E(π) and
P{0.51 < π < 0.59}?
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c) If the desired mean is 0.56 and the desired probability in the interval
(0, 51, 0.59) is 90%, what values of the parameters are returned by a suit-
ably modified script?

2.4 In Example 2.1.1, we require a prior distribution with E(π) ≈ 0.55 and
P{0.51 < π < 0.59} ≈ 0.95. If we were willing to use nonbeta priors, how
might we find ones that meet these requirements?

a) If we were willing to use a normal distribution, what parameters µ and σ
would satisfy the requirements?

b) Suppose we were willing to use a density function in the shape of an isosce-
les triangle. What equations for its sides would satisfy the requirements?

c) Plot three priors on the same axes: the beta density of Example 2.1.1
and the results of parts (a) and (b). Do you think the expert would ob-
ject strongly to any of these probability models of her feelings about
the distribution of π? (Use the method in Example 2.2.1 to put sev-
eral plots on the same axes. Experiment: If v <- c(0, 1, 1, 2, 2, 3)
and w <- c(0, 0, 1, 1, 0, 0), then what does lines(v, w) add to an ex-
isting plot?)

2.5 Computational methods are often necessary if we multiply the ker-
nels of the prior and likelihood and then can’t recognize the result as the
kernel of a known distribution. This can occur, for example, when we don’t
use a conjugate prior. We illustrate several computational methods using the
polling situation of Examples 2.1.1 and 2.2.1 where we seek to estimate the
parameter π.

To begin, suppose we know the beta prior p(π) (with α = 330 and β =
270) and the binomial likelihood p(x|π) (for x = 620 subjects in favor out
of n = 1000 responding). But we have not been clever enough to notice the
convenient beta form of the posterior p(π|x). We wish to compute the posterior
estimate of centrality E(π|x) and the posterior probability P{π > .6|x} of a
“big margin” in favor of the ballot proposition.

From the equation in (2.2), we have E(π|x) =
∫ 1

0
πp(π)p(x|π) dπ/D and

P (π > 0.6|x) =
∫ 1

0.6
p(π)p(x|π) dπ/D, where the denominator of the posterior

density is D =
∫ 1

0
p(π)p(x|π) dπ. You should verify these equations for yourself

before going on.

a) The following S-Plus script uses Riemann approximation to obtain the
desired posterior information. Match key quantities in the program with
those in the equations above. Also, interpret the last two lines of code.
Run the program and compare the results with those obtainable directly
from the known beta posterior of Example 2.2.1.

x <- 620; n <- 1000 # Data

m <- 10000; pie <- seq(0,1,length=m) # Grid points

igd <- dbeta(pie,330,270)*dbinom(x,n,pie) # Integrand

d <- mean(igd); d # Denominator
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# Results

post.pie.mean <- mean(pie*igd)/d; post.pie.mean

post.prob.bgwn <- (1/m)*sum(igd[pie > .6])/d;

post.prob.bgwn

post.cum <- cumsum((igd/denom)/m)

min(pie[post.cum > .025]); min(pie[post.cum > .975])

b) Now suppose we choose the prior NORM(0.55, 0.02) to match the expert’s
impression that the prior should be centered at π = 55% and put 95% of its
probability in the interval 51% < π < 59%. The shape of this distribution
is very similar to BETA(330, 270). (If you have not already done so in
Problem ??, plot these two densities on the same axis.) However, the
normal prior is not a conjugate prior. Write the kernel of the posterior, and
say why the method of Example 2.2.1 is intractable. Modify the program
above to use the normal prior (substituting a dnorm function for the dbeta
function). Run the modified program. Compare the results with those in
part (a).

c) The scripts in parts (a) and (b) above are “wasteful” because grid val-
ues of π are generated throughout (0, 1), but both prior densities are
essentially 0 outside of (0.45, 0.65). Modify the program in part (b) to in-
tegrate over this shorter interval. Strictly speaking, you need to divide d,
post.pi.mean, and so on, by 5 because you are integrating over a region
of length 1/5. (Observe the change in b if you shorten the interval without
dividing by 5.) But show that this correction factor “cancels out” in the
main results. Compare your results with those obtained above.

d) Modify the S-Plus script to do the computation with a normal prior
by Monte Carlo integration. Increase the number of iterations to m ≥
100, 000. Use dunif to make the vector pie. Part of the program depends
on having the π-values in order. (Which part? Why?) So sort(pie) before
use. Compare your results with those obtained by Riemann approxima-
tion. (If this were a multidimensional integration, some sort of Monte
Carlo integration would probably be the method of choice.)

e) (Advanced) Modify part (d) to generate normally distributed values of pie
(with sorted rnorm(m, .55,.02)), removing the dnorm factor from the
integrand. Explain why this works, and compare the results with those
above. This method is efficient because it concentrates π values in the
“important” part of (0, 1) where computed quantities are largest. (So there
would be no point in restricting the range of integration.) This is an
elementary example of importance sampling.

2.6 A commonly used frequentist principle of estimation provides a point
estimate of a parameter by finding the value of the parameter that maximizes
the likelihood function. The result is called a maximum likelihood esti-
mate (MLE). Here we explore one example of an MLE and its similarity to
a particular Bayesian estimate.
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Suppose we observe x = 620 successes in n = 1000 binomial trials and wish
to estimate the probability π of success. The likelihood function is p(x|π) ∝
πx(1− π)n−x taken as a function of π.

a) Find the MLE π̂. A common way to maximize p(x|π) in π is to maximize
`(π) = ln p(x|π). Solve d`(π)/dπ = 0 for π, and verify that you have found
an absolute maximum. State the general formula for π̂ and then its value
for x = 620 and n = 1000.

b) Plot the likelihood function for n = 1000 and x = 620. Approximate its
maximum value from the graph. Then do a numerical maximization with
the S-Plus script below. Compare with the answer in part (a).

pie <- seq(.001, .999, .001) # Avoid "pi" (3.1416)

like <- dbino(620, 1000, pie)

plot(like, type="l"); p[like==max(like)]

c) An approximate 95% confidence interval using π̂ and the normal approx-
imation to the binomial is π̂ ± 1.96

√
π̂(1− π̂)/n. Evaluate its endpoints

for 620 successes in 1000 trials.
d) Now we return to Bayesian estimation. A prior distribution that provides

little, if any, definite information about the parameter to be estimated is
called a noninformative prior. A commonly used noninformative beta
prior has α0 = β0 = 1, which is the same as UNIF(0, 1). For this prior and
data consisting of x successes in n trials, find the posterior distribution
and its mode.

e) For the particular case with n = 1000 and x = 620, find the posterior
mode and a 95% probability interval.
In many estimation problems, the MLE is in close numerical agreement
with the Bayesian point estimate based on a noninformative prior and on
the posterior mode. Also, a confidence interval based on the MLE may be
numerically similar to a Bayesian probability interval. But the underlying
philosophies of frequentists and Bayesians differ, and so the ways they
interpret results in practice may also differ.

2.7 The purpose of this problem is to derive the posterior distribution
p(µ|x) resulting from the prior NORM(µ0, σ0) and n independent observations
xi ∼ NORM(µ, σ). (See Example 2.2.2.)

a) Show that the likelihood is

f(x|µ) ∝
n∏

i=1

exp
[
− 1

2σ2
(xi − µ)2

]
∝

n∑

i=1

exp
[
− 1

2σ2
(x̄− µ)2

]
.

To obtain the first expression above, recall that the likelihood function
is the joint density function of x = (x1, . . . , xn)|µ. To obtain the second,
write

(xi − µ)2 = [(xi − x̄) + (x̄− µ)]2,
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expand the square, and sum over i. On distributing the sum, you should
obtain three terms. One of them provides the desired result, another is 0,
and the third is irrelevant because it does not contain the variable µ. (A
constant term in the exponential is a constant factor of the density, which
is not included in the kernel.)

b) To derive the expression for the kernel of the posterior, multiply the kernels
of the prior and the likelihood, and expand the squares in each. Then put
everything in the exponential over a common denominator, and collect
terms in µ2 and µ. Terms in the exponent that do not involve µ are
constant factors of the posterior density that may be adjusted as required
in completing the square to obtain the desired posterior kernel.

2.8 In Example 2.2.2 (on weighing a beam), we show formulas for the mean
and precision of the posterior distribution. Suppose five measurements of the
weight of the beam, using a scale known to have precision τ = 1, are: 198.54,
198.45, 196.09, 197.14, 198.62 (x̄ = 197.76).

a) Based on these data and the prior distribution of Example 2.1.2, what is
the posterior mean of µ? Does it matter whether we choose the mean, the
median, or the mode of the posterior distribution as our point estimate?
(Explain.) Find a 95% posterior probability interval for µ. Also, suppose
we are unwilling to use this beam if it weighs more than 199 pounds; what
are the chances of that?

b) Modify the S-Plus script shown in Example 2.2.1 to plot the prior and
posterior densities on the same axes. (Your result should be similar to
Figure 2.3.)

c) Taking a frequentist point of view, use the five observations given above
and the known variance of measurements produced by our scale to give
a 95% confidence interval for the true weight of the beam. Compare with
the results of part (a) and comment.

d) The prior distribution in this example is very “flat” compared with the
posterior: its precision is small. A practically noninformative normal prior
is one with precision τ0 that is much smaller than the precision of the data.
As τ0 decreases, the effect of µ0 diminishes. Specifically, limτ0→0 µn = x̄
and limτ0→0 τn = nτ . The effect is as if we had used p(µ) ∝ 1 as
the prior. Of course, such a prior distribution is not strictly possible
because

∫∞
−∞p(µ) dµ would be ∞. But it is convenient to use such an

improper prior as shorthand for understanding what happens to a pos-
terior as the prior gets less and less informative. What posterior mean
and 95% probability interval result from using an improper prior with our
data? Compare with the results of part (c).

e) Now change the example: Suppose that our vendor supplies us with a more
consistent product so that the prior NORM(201, 5) is realistic and that our
data above come from a scale with known precision τ = 0.4 Repeat parts
(a) and (b) for this situation.
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2.9 In a situation similar to that Examples 2.1.3 and 2.2.3 (on counting
mice), suppose that we want to begin with a prior distribution on the param-
eter λ that has E(λ) ≈ 8 and P{λ < 12} ≈ 0.95. Subsequently, we count a
total of t = 158 mice in n = 12 trappings.

a) Find the parameters of a gamma prior that satisfy the above requirements,
preferably using a program analogous to the one in Problem 2.3. (You can
come very close with α0 an integer, but don’t restrict κ0 to integer values.)

b) Find the gamma posterior that results from the prior in part (a) and the
data given above. Find the posterior mean and a 95% posterior probability
interval for λ.

c) As in Figure ??, plot the prior and the posterior. Why is the posterior
here less concentrated than the one in Figure ???

d) The ultimate noninformative gamma prior is the improper one with α0 =
κ0 = 0 (see Problems 2.6 and 2.8 for definitions). Using this prior and
the data above, find the posterior mean and a 95% posterior probability
interval for λ. Compare with the interval in part (c)?

Partial answers: In (a) you can use a prior with α0 = 13. Our posterior intervals

in (c) and (d) agree when rounded to integer endpoints: (11, 15). But not when

expressed to one or two place accuracy—as you should do.

2.10 In this chapter we have computed 95% posterior probability intervals
by finding values that cut off 2.5% from each tail. This method is computa-
tionally relatively simple and gives satisfactory intervals for most purposes.
However, for skewed posterior densities, it does not give the shortest interval
with 95% probability. The following S-Plus script finds the the shortest inter-
val for a gamma posterior. (The vectors p.low and p.up show endpoints of
enough 95% intervals that we can come very close to finding the one for which
the length, long, is a minimum.)

alpha <- 5; kappa <- 1

p.lo <- seq(.001,.05, .00001); p.up <- .95 + p.lo

q.lo <- qgamma(p.lo, alpha, kappa)

q.up <- qgamma(p.up, alpha, kappa)

long <- q.up - q.lo # Avoid reserved word ’length’

c(q.lo[long==min(long)], q.up[long==min(long)])

a) Compare the length of the shortest interval with that of the usual
(probability-symmetric) interval. What probability does the shortest in-
terval put in each tail?

b) Use the same method to find the shortest 95% posterior probability in-
terval in Example 2.2.3. Compare it with the probability interval given
there. Repeat, using suitably modified code, for 99% intervals.

c) Suppose a posterior density function has a single mode and decreases
monotonically as the distance away from the mode increases (for example,
a gamma density with α > 1). Then the shortest 95% posterior probability
interval is also the 95% probability interval corresponding to the highest
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values of the posterior: a highest posterior density interval. Explain
why this is true. For the 95% intervals in parts (a) and (b), verify that the
the heights of the posterior density curve are indeed the same at each end
of the interval (as far as allowed by the spacing 0.00001 of the probability
values used in the script).

2.11 For a pending American football game, the “point spread” is estab-
lished by experts as a measure of the difference in the ability of the two teams.
The point spread is often of interest to gamblers. Roughly speaking, the fa-
vored team is thought to be just as likely to win by more than the point
spread as to win by less or to lose. So ideally a fair bet that the favored team
“beats the spread” could be made at even odds. Here we are interested in the
difference x = v − w between the point spread v, which might be viewed as
the favored team’s predicted lead, and the actual point difference w (favored
team’s score minus opponent’s) when the game is played.

a) Suppose an amateur gambler, perhaps interested in bets that would not
have even odds, is interested in the precision of x and is willing to assume
x ∼ NORM(0, σ). Also, recalling relatively few instances with |x| > 30, he
seeks a prior distribution on σ that satisfies P{10 < σ < 20} = P{100 <
σ2 = 1/τ < 400} = P{1/400 < τ < 1/100} = 0.95. Using a program
similar to the one in Problem 2.3, find parameters α0 and κ0 for a gamma-
distributed prior on τ that approximately satisfy this condition.

b) Suppose data for point spreads and scores of 146 professional football
games show s =

√∑
x2

i /n = 13.3. Under the prior distribution of part (a),
what 95% posterior probability intervals for τ and σ result from these
data?

c) Use the noninformative improper prior distribution with α0 = κ0 = 0 and
the data of part (b) to find 95% posterior probability intervals for τ and σ.
Also, use these data to find the frequentist 95% confidence interval for σ
based on the distribution CHISQ(146), and compare it with the posterior
probability interval for σ.

Notes and clues: (a) Parameters α0 = 11, κ0 = 2500 give probability 0.945 and might

be used for part (b), but a properly written program will give integers that come

closer to 95%. (b) The data x in part (b), taken from more extensive data available

online [AAA], are for 1992 NFL home games; x̄ ≈ 0 and the data pass standard

tests for normality. For a more detailed discussion and Bayesian analysis of point

spreads see [BBB]. (c) The two intervals for σ agree closely, roughly (12, 15). You

should report results to one decimal place.

2.12 We want to know the precision of a newly purchased analytic device.
We believe its readings to be normally distributed and unbiased. We have
five standard specimens of known value to use in testing the device, so we
can observe the error xi that the device makes for each specimen. Thus we
assume that the xi are independent NORM(0, σ), and we wish to estimate
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σ = 1/
√

τ . (In the usual notation of this book, the standard deviation is σ
and the precision is τ .)

a) We use information from the manufacturer of the device to determine a
gamma-distributed prior for τ . This information is provided in terms of σ.
Specifically, we want the prior to be consistent with a median of about
0.65 for σ and with P{σ < 1} ≈ 0.95. If a gamma prior has parameter
α0 = 5, then what value of the parameter κ0 comes close to meeting these
requirements?

b) Find the likelihood function p(x|τ) =
∏n

i=1 p(xi|τ), where x = (xi, . . . , xn).
Find the posterior distribution p(τ |x) corresponding to this likelihood and
the prior distribution GAMMA(α0, κ0). Express the parameters of the pos-
terior in terms of α0, β0, n, and x1, . . . , xn.

c) The following five observations are obtained from the device for the test
specimens: −2.65, 0.52, 1.82,−1.41, 1.13. Give numerical values for the pa-
rameters of the posterior distribution. Find the posterior median value
of τ and a 95% posterior probability interval for τ . Use these to give the
posterior median value of σ and a 95% posterior probability interval for σ.

d) On the same axes, make plots of the prior and posterior distributions of τ .
Comment.

e) Taking a frequentist approach, find the maximum likelihood estimate
(MLE) τ̂ of τ based on the data given in part (c). Also use a standard
method to find 95% confidence intervals for σ2, σ, and τ . Compare these
with the Bayesian results in part (c).

Notes: The invariance principle of MLEs states that τ̂ = 1/σ̂2 = 1/σ̂2, where “hats”
indicate MLEs of the respective parameters. Also, “median” is invariant under any
monotone transformation. Thus, for the prior or posterior distribution of τ (al-
ways positive), Med(τ) = 1/Med(σ2) = 1/[Med(σ)]2. But, in general, “expectation”
is invariant only under linear transformations. For example, E(τ) 6= 1/E(σ2) and
E(σ2) 6= [E(σ)]2.
Here µ = 0. For the MLE of part (e),

∑n

i=1
x2

i /σ2 has the chi-squared distribution
with n (not n− 1) degrees of freedom; that is, GAMMA(n/2, 1/2).


