CALIFORNIA STATE UNIVERSITY, EAST BAY STATISTICS DEPARTMENT

Statistics 6502 Mathematical Statistics Spring 2013

Quiz II

1. (30 points) Suppose that $X \sim \text{Negative Binomial}(r_1, p_1)$ and $Y \sim \text{Negative Binomial}(r_2, p_2)$. Recall the Negative Binomial distribution.

$$f(x|p) = \binom{x-1}{r-1}(1-p)^r p^{x-r} \qquad x = r, r+1, \dots$$

Assume that X and Y independent, we wish to test whether the proportions are equal, $H_0: p_1 = p_2 = p$ versus $H_1: p_1 \neq p_2$, where p is unknown.

- (a) The parameter space $\Omega = (0,1) \times (0,1) = \{(p_1,p_2) | 0 < p_1 < 1, 0 < p_2 < 1\}$, and the subset corresponding to H_0 is $\Omega_0 = \{(p_1,p_2) | 0 < p_1 = p_2 < 1\}$. Sketch and label these sets on one graph.
- (b) Find the MLE's of p_1 and p_2 over Ω .
- (c) Find the MLE of p over Ω_0 .
- (d) Find the GLR statistic. Note that the test statistic does not simplify much, but can be computed easily.
- (e) Using the appropriate large sample approximation, specify the GLR test for the significance level α .
- (f) What R code could be used to compute the critical value of test?
- 2. (40 points) Let X have one of the following four distributions:

x	$f_0(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$
x_1	0.2	0.5	0.3	0
x_2	0.3	0.1	0.0	0
x_3	0.1	0.2	0.4	0.5
x_4	0.4	0.2	0.3	0.5

Determine the G.L.R. test $\phi(x)$ for testing the following simple null hypothesis versus the composite alternative hypothesis

$$H_0: X \sim f_0(x)$$
$$H_1: X \sim f_1(x) \quad or \quad X \sim f_2(x) \quad or \quad X \sim f_3(x)$$

at the $\alpha = 0.10$ level? What is the test at the 0.30 level?

- 3. (Extra Credit) You are given a single observation from either the standard normal or the uniform distribution on (-4, 4) distribution.
 - (a) Accurately sketch a picture of the null and alternative densities on one set of axes.
 - (b) Find the most powerful test of size $\alpha = 0.05$ for

$$H_0: X \sim Normal(0, 1^2)$$

versus

$$H_1: X \sim Uniform(-4, 4).$$

- (c) Calculate the power, π , of the test.
- (d) Calculate the probability of Type II Error, β , for the test.