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Using Gibbs Samplers to Compute
Bayesian Posterior Distributions

In Chapter 8, we introduced the fundamental ideas of Bayesian inference, in
which prior distributions on parameters are used together with data to obtain
posterior distributions and thus interval estimates of parameters. However, in
practice, Bayesian posterior distributions are often difficult to compute.

Gibbs Sampling is a computational method that uses Markov Chains, as
discussed in Chapter 7, to approximate posterior distributions. The central
idea is to use available information about a prior distribution and data to
construct an ergodic Markov Chain whose limiting distribution is the desired
posterior distribution. Then we simulate enough steps of the chain to obtain
a good approximation to the limiting distribution

In this chapter, we consider several relatively simple Bayesian models,
explicitly illustrating how to program suitable chains in R in order to approx-
imate posterior distributions and obtain interval estimates of parameters. In
Chapter 10, we show how WinBUGS software can simplify the programming
to do inference for more intricate Bayesian models.

9.1 Bayesian Estimates of Disease Prevalence

In Section 5.2 we considered how one might use the properties and results of
a medical screening test to estimate the prevalence of a disease. In particular,
we assumed we know the sensitivity and specificity of a screening test,

η = P{Positive test|Disease present} = P{T = 1|D = 1}

and
θ = P{Negative test|Disease absent} = P{T = 0|D = 0},

respectively. Based on these quantities, we sought to estimate the prevalence
of the disease π = P{D = 1}, from the equation π = (τ + θ − 1)/(η + θ − 1),
where τ = P{T = 1}. If τ is estimated by t = A/n, which is the ratio of the
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number of individuals with positive tests to the sample size, then replacing τ
by t in this equation gives an estimate p of π:

p =
A/n + θ − 1
η + θ − 1

=
t + θ − 1
η + θ − 1

. (9.1)

For the derivation see page 117. Endpoints of a confidence interval for τ can
be plugged into this equation to obtain a confidence interval for π.

However, we have seen some circumstances in which such an estimate of π
falls outside the interval [0, 1]. Even more often, the corresponding confidence
interval for π can extend beyond this interval. Another difficulty with this
method arises when the sample size is small and the proportion of “Successes”
is near 0 or 1. Then binomial confidence intervals are known to be problematic
and equation (9.1) may not provide a useful interval estimate of π.

In Section 6.4 we investigated the situation in which, for a particular pop-
ulation, we know the predictive power of a positive test γ = P{D = 1|T = 1}
and of a negative test δ = P{D = 0|T = 0} in addition to η and θ. Here the
relationships γ = πη/[πη+(1−π)(1−θ)] and δ = (1−π)θ/[π(1−η)+(1−π)θ],
follow from Bayes’ Theorem. So if we knew π along with η and θ, we could
compute γ and δ. Accordingly, it seems reasonable that we should be able
to compute π if η, θ, γ and δ are known. In the examples of Section 6.4, we
saw how this can be done either by simulation (simple Gibbs Sampler) or
analytically (solving for the steady state of a Markov Chain). Unfortunately,
these particular procedures are mainly of theoretical and pedagogical interest
because data to estimate γ and (especially) δ are not typically available in
practical situations.

Fortunately, in a framework with a Bayesian prior distribution, we can use
a Gibbs Sampler to find useful estimates of π. With a prior distribution on π
having support [0, 1], the following example shows how to obtain a posterior
probability interval for π based on data A and n, and on known values of
the sensitivity η and specificity θ, with no need to make assumptions about
the predictive values γ and δ. Because values of π outside of [0, 1] are not
contemplated in the prior, they have zero probability under the posterior.

Example 9.1. Suppose we use a screening test with sensitivity η = 99% and
specificity θ = 97%, and among n = 1000 subjects we see A = 49 positive
results. We use a beta prior distribution for π. That is, π ∼ BETA(α, β). Not
claiming to have advance information about π, we choose the flat prior with
α = β = 1, so that the prior is π ∼ BETA(1, 1) = UNIF(0, 1).

Our Gibbs sampler starts with an arbitrary initial value π∗1 of π. From π∗1
and our knowledge of η and θ, we speculate as to the number X of the A
test-positive subjects that may have the disease. Based on π∗1 , the probability
that any one of these A subjects has the disease is equal to the predictive
value of a positive test, γ∗1 = π∗1η/[π∗1η+(1−π∗1)(1−θ)]. So we use a binomial
distribution with A trials and this “Success” probability γ∗1 to simulate X. In
much the same way, we simulate the number Y of the B = n−A test-negative
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subjects that have the disease. Altogether, we now have X + Y subjects out
of n with the disease, and we can use this simulated total to update the beta
distribution for π—as in the election polling examples of Chapter 8. From this
updated distribution we simulate π∗2 , and iterate the procedure from there to
get π∗3 , π∗4 , . . . . In symbols, the partial conditional distributions relating the
key quantities are

X|A, π ∼ BINOM(A, γ), Y |B, π ∼ BINOM(B, 1− δ), and

π|X, Y ∼ BETA(α + X + Y, β + n−X − Y ),

where γ = πη/[πη + (1 − π)(1 − η)], δ = (1 − π)θ/[π(1 − η) + (1 − π)θ], and
B = n−A. These relationships are used in the R code below. Simulated values
of π shown with asterisks (*) above are elements of the vector PI (all capitals)
in the code.

Because the distribution of π∗i = PI[i] depends only on known parameters
and the previous value π∗i−1 = PI[i-1] the values in PI simulate a Markov
process with a continuous state space as in Chapter 7. It can be shown that
the limiting distribution of this process is the posterior distribution of π based
on the prior and the data.

# set.seed(1237)

m = 50000 # iterations

PI = numeric(m); PI[1] = .5 # vector for results, initial value

alpha = 1; beta = 1 # parameters of beta prior

eta = .99; theta = .97 # sensitivity; specificity

n = 1000; A = 49; B = n - A # data

for (i in 2:m)

{

num.x = PI[i-1]*eta; den.x = num.x + (1-PI[i-1])*(1 - theta)

X = rbinom(1, A, num.x/den.x)

num.y = PI[i-1]*(1 - eta); den.y = num.y + (1-PI[i-1])*theta

Y = rbinom(1, B, num.y/den.y)

PI[i] = rbeta(1, X + Y + alpha, n - X - Y + beta)

}

aft.brn = seq(m/2 + 1,m)

mean(PI[aft.brn])

quantile(PI[aft.brn], c(.025, .975))

par(mfrow=c(2,1))

plot(aft.brn, PI[aft.brn], type="l")

hist(PI[aft.brn], prob=T)

par(mfrow=c(1,1))

> mean(PI[aft.brn])

[1] 0.02059591

> quantile(PI[aft.brn], c(.025, .975))

2.5% 97.5%

0.007428221 0.035523630
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Figure 9.1. History plot (top) and histogram of 25,000 sampled prevalence values
after burn-in. The plot shows good mixing of the Gibbs Sampler in Example 9.1.
The histogram approximates the posterior distribution π|A, B; an estimated density
curve is superimposed (see Problem 9.6). Dotted lines indicate the 95% Bayesian
interval estimate of π. Compare with Figure 9.10 on page 231.

The histogram in the top panel of Figure 9.1 indicates the posterior distri-
bution of π. Taking the mean of this distribution, we have the point estimate
π = 0.021, and cutting off 2.5% from each tail of the this simulated distribu-
tion, we have the Bayesian interval estimate (0.007, 0.036) for π. Problem 9.1
invites you to see how these results change when we use some informative
prior distributions.

Essentially, Figure 9.2 is made using the following additional statements.

par(mfrow=c(1,2))

acf(PI[aft.brn], ylim=c(0, .6))

plot(1:m, cumsum(PI)/(1:m), type="l", ylim=c(.016, .024))

par(mfrow=c(1,1))

The three diagnostic graphs in the top panel of Figure 9.1 and in Figure 9.2
show that, in spite of some positive autocorrelation for neighboring values
of π∗i |A,B, the sampler mixes well and that running averages after burn-in
converge smoothly to the point estimate. (See Problem 9.4 for more about
running averages and burn-in.)

It is easy to see why there is positive autocorrelation. If by chance at some
step i in the iteration, we obtain a rather large value of π∗i , then it is
somewhat likely that unusually large values of X or Y or both will result at
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Figure 9.2. The ACF plot (left) of sampled values of π after burn-in for Example 9.1
shows autocorrelations of sampled values decaying to insignificance for lags above 25.
The plot of cumulative averages of sampled values shows steady convergence to the
Bayesian point estimate of π after burn-in (dotted vertical line.)

step i+1. Consequently, the first parameter of the beta distribution may be
inflated, and along with it the expectation of the next value of π∗i . However,
the data and the prior exert an overall tendency towards appropriate values
of π∗i , so the process does not consistently ”run away” towards ever larger
values. A mirror of this argument holds in case we get an unusually low
value of π∗i at some step in the simulation. (See Problem 9.5 for more on
autocorrelations.)

In this example, equation (9.1) gives the traditional point estimate p =
0.020 of π and corresponding confidence interval (0.006, 0.034). [The Agresti-
Couil estimates of τ give p = 0.022 and (0.008, 0.036).] So in this situation
where equation (9.1) works well, the Gibbs Sampler with a noninformative
prior gives almost identical results. Moreover, Problem 9.2 illustrates that a
Gibbs Sampler gives reasonable point and interval estimates of π, even in
situations where equation (9.1) gives problematic negative estimates. ♦

Although there are many important applications in which equation (9.1)
is not useful, the benefit of the Bayesian framework is not just to avoid absurd
estimates outside the range of possible parameter values. In practice, one sel-
dom encounters a situation where there is no prior information at all about
prevalence. For example, if π = 93%— or even π = 30%—for a serious disease,
the evidence of this public health catastrophe would be evident all around us
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without reference to data from medical screening tests. Also, in practice one
often encounters situations where there is very little data and a reasonable
approach is to meld expert opinion with the bit of objective information that
is available. For such reasons, it is fair to say that Gibbs Sampling, as illus-
trated in Example 9.1, has wide applicability in estimating prevalence from
the results of screening tests across a broad spectrum of applications.

9.2 Bayesian Estimates of Normal Mean and Variance

In Chapter 8, we discussed separately (i) Bayesian estimation of the mean µ of
a normal population when the variance is known and (ii) Bayesian estimation
of the variance σ2 = θ when the mean is known. In this section we use a
Gibbs Sampler to provide Bayesian estimates of the normal mean and variance
simultaneously. In the following example, we see that—when relatively flat
priors are used—Bayesian results are very similar to those obtained from
traditional methods based on Student’s t and chi-squared distributions. In
several problems, we explore the effect of informative priors.

Example 9.2. Changes in students’ heights.
Heights of n = 41 young men at a boarding school are measured in the

morning and also in the evening. For each student, the difference xi, morning
height minus evening height, is found. Considering these subjects to be a ran-
dom sample from an appropriate population, our main purpose is to estimate
the population mean µ of the change in height.

If we take differences in heights xi, for i = 1, 2, ..., 41, to be normally
distributed, this example is similar in some ways to Examples 8.3 and 8.7
(concrete beams) and Examples 8.4 and 8.8 (hemoglobin). Here we assume
xi ∼ NORM(µ, σ), where both parameters are unknown. The classical unbi-
ased point estimators are x̄ = 1

n

∑
i xi for µ and s2 = 1

n−1

∑
i(xi − x̄)2 for

σ2 = θ. We seek Bayesian point and interval estimates for µ and σ.
Prior distributions. First, we choose a prior distribution for µ of the form

NORM(µ0, σ0), where θ0 = σ2
0 . Specifically, we choose µ0 = 0 because we

have no reason to suppose heights differ systematically between morning and
evening. Also, we want a reasonably flat prior because we claim no particular
expertise in the matter of height changes, and we do not really know whether
students might grow or shrink a little during the day. Thus, rather arbitrarily,
we choose σ0 = 20mm (about 3/4 of an inch), so θ0 = 400.

Next, we choose a prior distribution for θ of the form IG(α0, κ0), where
α0 and κ0 are shape and rate parameters, respectively. We do not have much
idea how accurately the measuring will be done, and differences involve two
measurements. Also, if there are differences in heights during a day, those
differences may be larger for some students than for others. Accordingly, we
choose α0 = 1/2 and κ0 = 1/5, which means we think the standard deviation
of the differences is pretty sure to be between 0.3mm and 20mm (computed
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from sqrt(1/qgamma(c(.975, .025), 1/2, 1/5)). This choice seems rea-
sonable. As heights go, a millimeter is very small and it seems unlikely that
measurements could be made much more precisely than that. Also, 20mm
seems an unbelievably large amount of measurement error or variability in
daily changes among students.

Data. From the data we find n = 41 differences xi, for which the sample
mean is x̄ = 9.6mm and the sample variance is s2 = 7.48, so that s = 2.73mm.
(See Problem 9.11 for the 41 differences.) A Bayesian analysis will combine
these data and our priors to give posterior distributions upon which we base
our inferences.

Posterior distributions. Almost exactly as in Example 8.7, we have

µ|x, θ ∼ NORM(µ′,
√

θ′),

where the updated parameters (denoted with primes), reflecting the data, are
µ′ = θ′(nx̄/θ + µ0/θ0) and θ′ = (n/θ + 1/θ0)−1 = θ0θ/(nθ0 + θ). Also, similar
to our results in Example 8.8,

θ|x, µ ∼ IG(α′, κ′),

where α′ = α0 + n/2 and κ′ = κ0 + [(n− 1)s2 + n(x̄− µ)2]/2. The important
change from Example 8.8 is the second term inside brackets in the expres-
sion for κ′, needed here to take x̄ into account because µ is not known. (See
Problem 9.13 for some details of the derivation.)

Now, in order to find the posterior distributions of µ|x and θ|x, we use a
Gibbs Sampler to perform the required integrations:

p(µ|x) ∝
∫

p(µ|x, θ) p(θ|x) dθ and p(θ|x) ∝
∫

p(θ|x, µ) p(µ|x) dµ.

Gibbs Sampler. Using the R code below, we simulate a bivariate Markov
Chain with vectors denoted in the program as MU and THETA. The limiting
distribution of this chain provides estimates of the posterior distributions of
µ and θ, respectively, upon which Bayesian estimates are based. The simula-
tion begins with known quantities: the parameters µ0 and θ0 of the normal
prior distribution on µ, the parameters α0 and κ0 of the inverse gamma prior
distribution on θ, the data x̄ and s2, and an arbitrary starting value THETA[1].

Iteratively, at step i of the Gibbs Sampler, we generate values MU[i] and
THETA[i] of the Markov Chain. We sample MU[i] from NORM(µ′,

√
θ′), where

θ in the expressions for µ′ and θ′ is taken to be THETA[i-1]. Then we sample
THETA[i] from IG(α′, κ′), where µ in the expression for κ′ is taken to be MU[i].

We choose m = 50 000 steps as the burn-in point. Accordingly, we con-
sider values of MU and THETA from steps i = m/2 + 1 through m as simulated
distributions of µ|x and θ|x, respectively. Cutting off 2.5% from the tails of
these simulated distributions gives us Bayesian interval estimates of µ and θ.
From the interval estimate of θ = σ2, we obtain an interval estimate of σ.
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# set.seed(1237)

m = 50000 # iterations

MU = numeric(m); THETA = numeric(m) # sampled values

THETA[1] = 1 # initial value

n = 41; x.bar = 9.6; x.var = 2.73^2 # data

mu.0 = 0; th.0 = 400 # mu priors

alp.0 = 1/2; kap.0 = 1/5 # theta priors

for (i in 2:m)

{

th.up = 1/(n/THETA[i-1] + 1/th.0)

mu.up = (n*x.bar/THETA[i-1] + mu.0/th.0)*th.up

MU[i] = rnorm(1, mu.up, sqrt(th.up))

alp.up = n/2 + alp.0

kap.up = kap.0 + ((n-1)*x.var + n*(x.bar - MU[i])^2)/2

THETA[i] = 1/rgamma(1, alp.up, kap.up)

}

# Bayesian point and probability interval estimates

aft.brn = (m/2 + 1):m

mean(MU[aft.brn]) # point estimate of mu

bi.MU = quantile(MU[aft.brn], c(.025,.975)); bi.MU

mean(THETA[aft.brn]) # point estimate of theta

bi.THETA = quantile(THETA[aft.brn], c(.025,.975)); bi.THETA

SIGMA = sqrt(THETA)

mean(SIGMA[aft.brn]) # point estimate of sigma

bi.SIGMA = sqrt(bi.THETA); bi.SIGMA

par(mfrow=c(2,2))

plot(aft.brn, MU[aft.brn], type="l")

plot(aft.brn, SIGMA[aft.brn], type="l")

hist(MU[aft.brn], prob=T); abline(v=bi.MU, col="red")

hist(SIGMA[aft.brn], prob=T); abline(v=bi.SIGMA, col="red")

par(mfrow=c(1,1))

> mean(MU[aft.brn]) # point estimate of mu

[1] 9.594313

> bi.MU = quantile(MU[aft.brn], c(.025,.975)); bi.MU

2.5% 97.5%

8.753027 10.452743

> mean(THETA[aft.brn]) # point estimate of theta

[1] 7.646162

> bi.THETA = quantile(THETA[aft.brn], c(.025,.975)); bi.THETA

2.5% 97.5%

4.886708 11.810233

> SIGMA = sqrt(THETA)
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Figure 9.3. History plots (top) and histograms of sampled values approximating µ|x
(left) and σ|x in the Gibbs Sampler of Example 9.2. All values are after burn-in.
Vertical dashed lines show 95% Bayesian interval estimates.

> mean(SIGMA[aft.brn]) # point estimate of sigma

[1] 2.747485

> bi.SIGMA = sqrt(bi.THETA); bi.SIGMA

2.5% 97.5%

2.210590 3.436602

Diagnostic graphs in Figure 9.3 (top) show good behavior of the Gibbs
Sampler, so the numerical results from MU and SIGMA can be trusted accu-
rately to represent the posterior distributions µ|x and σ|x. Also, because this
is a bivariate Markov Chain we show, in Figure 9.4 on page 220, a scatter-
plot of the last 10 000 sampled pairs approximating (µ, σ)|x. (For additional
diagnostic graphs, see Problem 9.8.)

The 95% Bayesian interval estimates are (8.73, 10.44) for µ and (2.22, 3.45)
for σ. On average, it seems that from morning to evening the students shrink
in height by about a centimeter (10mm or about 3/8in). Other studies have
found similar decreases in height. A plausible explanation is that the cartilage
between vertebrae is compressed during the day and expands during sleep.

Frequentist methods that use Student’s t and chi-squared distributions
give a 95% confidence interval (8.74, 10.46) for µ and a 95% confidence inter-
val (2.24, 3.49) for σ (see Problem 9.9). The Bayesian probability intervals are
slightly shorter than the corresponding frequentist confidence intervals, possi-
bly because our prior distributions, even though diffuse, provide some useful
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Figure 9.4. Scatterplot of the last 10 000 pairs in Example 9.2 simulating (µ, σ)|x.
The prior distributions on µ and θ = σ2 are independent, as are the sample statis-
tics x̄ and s. Also, this plot shows no marked association between simulated values
of µ|x and σ|x. Reference lines indicate 95% Bayesian interval estimates for µ and σ.

information about variability. But in this example, the effect of our prior
distributions is relatively small because there is enough data to overwhelm
the effect of priors that are not strongly informative. ♦

In general, if we make the prior parameter σ0 very large and the param-
eters α0 and κ0 very small, then neither prior affects the posterior by much,
and the Bayesian intervals are nearly equal to the corresponding frequentist
confidence intervals. Specifically, one formulation of a noninformative prior
gives the following posterior distributions

t =
µ− x̄

s/
√

n
∼ T(n− 1) and (n− 1)s2/σ2 ∼ CHISQ(n− 1) ,

where µ and σ are random variables and x̄ and s are observed values. These
yield 95% Bayesian interval estimates for µ and σ that are numerically exactly
the same as the respective traditional frequentist 95% confidence intervals.

Moreover, there are particular ways to formulate informative priors so
that posterior distributions given x̄ and s can be be expressed in closed
form. Then Bayesian interval estimates can be found for µ and σ without the
need for Gibbs sampling. (For discussions of more general priors see [BT73]
and [Lee04].)

In practice, Gibbs Samplers are especially important in models with many
parameters, to which Example 9.2 provides an important pedagogical bridge.
In the next section, we consider a three-parameter model for which traditional
methods may be especially inappropriate and for which a Gibbs Sampler is a
practical way to compute useful Bayesian inferences.
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9.3 Bayesian Estimates of Components of Variance

In Section 9.1 we saw that a Bayesian approach to estimating disease preva-
lence gave useful estimates in circumstances where traditional methods can
give absurd results. In this section we look at one more practical situation in
which a traditional frequentist approach often does not provide useful esti-
mates and a Bayesian framework does.

Suppose a manufacturing process has two steps. Precursors of the finished
items are made in batches, and then the batches are used to produce the
individual items. If a key measurement on the final items shows excessive
variability, the question arises whether this variability may arise mainly at
the batch level or mainly at the final stage of the overall process. A logical
step toward reducing variability is to try to understand where it arises. We
want to estimate the two components of variance that contribute towards
overall variance of individual items.

Assuming normal distributions for errors, we can write the measured value
of the jth item from the ith batch as

xij = µ + Ai + eij ,

where Ai ∼ NORM(0,
√

θA), eij ∼ NORM(0,
√

θ), and all Ai and eij are
mutually independent. This implies that measurements on two items from
two different batches are independent, but that measurements xij and xij′ on
two items from batch i are correlated. Specifically, V(xij) = V(xij′) = θA + θ,
Cov(xij , xij′) = θA, and ρI = ρ(xij , xij′) = θA/(θA + θ). The ratio ρI , called
the intraclass correlation, is the proportion of the total variance that arises
at the batch level of the manufacturing process.

Example 9.3. Consider a pilot project to manufacture a pharmaceutical drug
in two steps as just described. Technicians want to know if variability among
batches makes an important contribution to product variability. They assay
r = 10 individual lots from each of g = 12 batches.

In this example, so we can know whether our estimates are reasonable, we
generate data with known parameter values µ = 100, θA = 152 = 225, and
θ = 92 = 81, so that ρI = 225/306 = 0.7353—values roughly modeled after
proprietary data. These gr = 120 observations are plotted in Figure 9.5 and
the procedure for generating them is shown in Problem 9.14. Because the data
are normal, it is sufficient to look at the g = 12 batch means x̄i. = 1

r

∑
j xij

and variances s2
i = 1

r−1

∑
j(xij − x̄i.)2. Summary data by batch are shown in

the printout below.

Batch 1 2 3 4 5 6

Mean 91.9 129.0 104.1 75.7 108.7 100.2

SD 9.96 10.07 4.98 12.16 5.06 10.65

Batch 7 8 9 10 11 12

X.bar 62.6 107.5 66.7 129.1 106.8 93.4

X.sd 6.52 11.05 9.90 8.39 8.99 8.14
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Figure 9.5. Boxplots of the data of Example 9.3. Dots show group means. Clearly,
variance among batches contributes significantly to the variability of individual ob-
servations. Compare with Figure 9.6, which illustrates the data of Problem 9.17
where batch-to-batch variability is relatively much smaller.

In these circumstances, it is traditional to look at the following statistics.

x̄.. =
g∑

i=1

r∑

j=1

xij = 97.975

MS(Batch) =
r

g − r

g∑

i=1

(x̄i. − x̄..)2 = 4582.675

MS(Error) =
1

g(r − 1)

g∑

i=1

r∑

j=1

(xij − x̄i.)2 =
1
g

g∑

i=1

s2
i = 82.68056

For normal data, these three statistics are independent, and the following
distributions are useful for making confidence intervals.

(x̄.. − µ)/
√

MS(Batch)/gr ∼ T(g − 1)
(g − 1)MS(Error)/(rθA + θ) ∼ CHISQ(g − 1)

(gr − 1)MS(Error)/θ ∼ CHISQ(gr − 1)
R = MS(Batch)/MS(Error) ∼ F(g − 1, gr − 1)

Unbiased point estimates are µ̂ = x.. = 97.975 (compared to the known
µ = 100), θ̂ = MS(Error), and θ̂A = [MS(Batch) −MS(Error)]/r = 449.999.
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Figure 9.6. Boxplots of the data of Problem 9.17, drawn to the same scale as
Figure 9.5 for easy comparison. Here batch-to-batch variance θA is so small that
traditional methods of estimating it are problematic. A Gibbs Sampler yields a
useful Bayesian probability interval (see the problem, page 237).

Taking square roots, we have estimates for the standard deviations σ̂ = 9.09
(compared to σ = 9) and σ̂A = 21.21 (compared to σA = 15). Of these,
the estimate of θA can be problematic. Information about batch variability
is entangled with information about item variability. Because θ̂A is found by
subtraction, its value can be negative, even though θA is nonnegative.

Frequentist confidence intervals for µ, σ, and ρI can be obtained from t,
chi-squared, and F distributions, respectively (see Problem 9.15). There is no
such straightforward confidence interval for θA. Also, the confidence interval
for ρI includes negative values when θ̂A < 0. There are models in which
intraclass correlation can legitimately be negative (see [SC80]), but ours is
not one of them.

A Bayesian framework for this model is similar to that of Example 9.2,
with one additional variance parameter. Our prior distributions are

µ ∼ NORM(µ0,
√

θ0), θA ∼ IG(α0, κ0), and θ ∼ IG(β0, λ0) .

In order to have noninformative priors for this example with simulated data,
we select a large value of θ0 and small values of all four inverse gamma pa-
rameters.

Partial conditional distributions used in the Gibbs Sampler to compute the
posterior distributions of µ, θ, and θA are as follows (see [GS85], page 405).
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µ|θA,A ∼ NORM(µ′,
√

θ′), θA|A, µ ∼ IG(α′, κ′), and θ|X,A ∼ IG(β′, λ′) ,

where

µ′ = (µ0θA + θ0

∑
i Ai)/(θA + r

∑
i Ai) and θ′ = θ0θA/(θA + r

∑
i Ai)

in the partial conditional for µ|θA,A;

α′ = α0 + g/2 and κ′ = κ0 + 1
2

∑
i(Ai − µ)2

in the partial conditional for θA|A, µ; and

β′ = β0 + gr/2 and λ′ = λ0 + 1
2 [(r − 1)

∑
i s2

i + r
∑

i(Ai − x̄i.)2]

in the partial conditional for θ|X,A. In the above, the g elements of A are

Ai ∼ NORM((rθAx̄i. + θµ)/(rθA + θ), [θθA/(rθA + θ)]1/2) .

The R code below shows how these relationships can be used in a Gibbs
Sampler to simulate a 3-dimensional Markov Chain of sampled values in vec-
tors denoted MU, VAR.BAT, and VAR.ERR. From them we can find Bayesian
interval estimates of µ, θA, and θ, respectively. Each step of the sampler uses
the prior distributions and the data.

• The sampler starts with an arbitrary initial value of MU[1]. We also require
values of the random effects Ai, so-called latent variables, which are
not directly observable as data. In the program these are denoted by the
g-vector a. On the first pass through the loop, we use the group means x̄i.

as initial values of a. On later passes, updated values of a are available.
• Next, the sampler uses values of a and MU[1] to sample VAR.BAT[2], and

VAR.ERR[2], then it uses VAR.BAT[2] and VAR.ERR[2] to sample MU[2].
• At the end of the loop, new latent values a are sampled using MU[2],

VAR.BAT[2], and VAR.ERR[2].
• The loop is iterated, at each pass using values of MU[k-1], VAR.BAT[k-1],

VAR.ERR[k-1], and the newest values a to sample elements of the vectors
with index [k].

Finally, when all iterations are completed, Bayesian interval estimates of µ, θA

and θ are found from the values after burn-in of the three simulated vectors,
and intervals for σA, σ, and ρI are found from information the Gibbs Sampler
provides about θA = σ2

A and θ = σ2.

#Assumes matrix X with g rows (batches), r columns (reps),

#Or provide g-vectors of batch means and SDs as the 2nd line.

# set.seed(443)

X.bar = apply(X, 1, mean); X.sd = apply(X, 1, sd)

m = 50000; b = m/4 # iterations; burn-in

MU = VAR.BAT = VAR.ERR = numeric(m)
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Figure 9.7. Histograms of simulated posteriors for Example 9.3. Results are from
the vectors MU, SIGMA.BAT, SIGMA.ERR, and ICC of the Gibbs Sampler after burn-
in. Indications of the 95% Bayesian interval estimate and the estimated posterior
density are superimposed on each histogram.

mu.0 = 0; th.0 = 10^10 # prior parameters for MU

alp.0 = .001; kap.0 = .001 # prior parameters for VAR.BAT

bta.0 = .001; lam.0 = .001 # prior parameters for VAR.ERR

MU[1] = 150; a = X.bar # initial values

for (k in 2:m) {

alp.up = alp.0 + g/2

kap.up = kap.0 + sum((a - MU[k-1])^2)/2

VAR.BAT[k] = 1/rgamma(1, alp.up, kap.up)

bta.up = bta.0 + r*g/2

lam.up = lam.0 + (sum((r-1)*X.sd^2) + r*sum((a - X.bar)^2))/2

VAR.ERR[k] = 1/rgamma(1, bta.up, lam.up)

mu.up = (VAR.BAT[k]*mu.0 + th.0*sum(a))/(VAR.BAT[n] + g*th.0)

th.up = th.0*VAR.BAT[k]/(VAR.BAT[n] + g*th.0)

MU[k] = rnorm(1, mu.up, sqrt(th.up))

deno = r*VAR.BAT[k] + VAR.ERR[k]

mu.a = (r*VAR.BAT[k]*X.bar + VAR.ERR[k]*MU[k])/deno

th.a = (VAR.BAT[k]*VAR.ERR[k])/deno

a = rnorm(g, mu.a, sqrt(th.a)) }
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mean(MU[b:m]); sqrt(mean(VAR.BAT[b:m])); sqrt(mean(VAR.ERR[b:m]))

bi.MU = quantile(MU[b:m], c(.025,.975))

SIGMA.BAT = sqrt(VAR.BAT); SIGMA.ERR = sqrt(VAR.ERR)

bi.SG.B = quantile(SIGMA.BAT[b:m], c(.025,.975))

bi.SG.E = quantile(SIGMA.ERR[b:m], c(.025,.975))

ICC = VAR.BAT/(VAR.BAT+VAR.ERR);

bi.ICC = quantile(ICC[b:m], c(.025,.975))

bi.MU; bi.SG.B; bi.SG.E; bi.ICC

par(mfrow=c(2,2))

hist(MU[b:m], prob=T); abline(v=bi.MU)

hist(SIGMA.BAT[b:m], prob=T); abline(v=bi.SG.B)

hist(SIGMA.ERR[b:m], prob=T); abline(v=bi.SG.E)

hist(ICC[b:m], prob=T); abline(v=bi.ICC)

par(mfrow=c(1,1))

> mean(MU[b:m]); sqrt(mean(VAR.BAT[b:m])); sqrt(mean(VAR.ERR[b:m]))

[1] 98.00235

[1] 23.41598

[1] 9.177717

> bi.MU; bi.SG.B; bi.SG.E; bi.ICC

2.5% 97.5%

84.30412 111.59195

2.5% 97.5%

14.84336 36.16719

2.5% 97.5%

8.022159 10.488738

2.5% 97.5%

0.7146413 0.9421721

From the printouts for one run of the Gibbs Sampler, we see that the
Bayesian point estimates (98.0 for µ, 23.4 for σA, and 9.2 for σ) are not much
different from the traditional ones (98.0, 21.2, and 9.1, respectively). Also,
the 95% Bayesian interval estimates of these parameters all happen to cover
the known values we used to simulate the data (100, 15, and 9, respectively).
Based on distributions stated earlier, traditional 95% confidence intervals are
(85.7, 110.2) for µ, (8.0, 10.5) for σ, and (0.71, 0.94) for ρI .

Figure 9.7 shows the approximate posterior distributions and 95% Bayesian
interval estimates for µ, σA, σ, and ρI . Figure 9.8 shows diagnostic plots—all
favorable—for the dimension of the sampler estimating σA, and we leave the
remaining diagnostic plots to Problem 9.16.

The 95% Bayesian interval estimate of σA is very wide because we have
information on only g = 12 batches. In contrast, we have much more informa-
tion about σ and that information is not entangled with other effects, so the
interval for σ is shorter. If all observations cost the same, it might be better
to increase g at the expanse of r. But in practice, batches are often expensive.
In our consulting experience, the number of batches has rarely exceeded 12.
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Figure 9.8. Diagnostic plots for the simulation of the posterior distribution of σA

in Example 9.3. Evidently, the Gibbs Sampler converges smoothly to its limiting
distribution. Only the plot of cumulative means shows all steps; the others use steps
after burn-in. The histogram is also shown in Figure 9.7.

Faced with long interval estimates for the batch component of variance,
some authors and practitioners use 90% intervals instead. (In this particular
example, that would give an interval that doesn’t cover 15.) In a Bayesian
context where appropriate prior information is available, an informative prior
on θA = σ2

A might give a shorter and more useful interval estimate. ♦
In this example, traditional methods give useful answers. However, tradi-

tional methods become problematic when the batch component of variance
is relatively small. Then the usual point estimate θ̂A of θA may be negative
and the confidence interval for ρI can include negative values. As we see in
Problem 9.18, this happens more than occasionally.

• One standard interpretation is to say this is an indication that θA must
be “very small.” Maybe so, but presumably we would not have chosen a
model containing θA without reason to believe batches might make some
contribution to overall variance, and this analysis leaves us with no idea
how large θA might really be.

• A related traditional approach is to test the null hypothesis H0 : θA = 0
against H1: θA > 0. What do we say if H0 is accepted, as it surely will be
when θ̂A < 0? Again the interpretation is that θA is “very small.” But then
we would have to speculate about the power of the test, the probability
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Figure 9.9. Bivariate plots from the Gibbs Sampler of Example 9.3. In each of
the four panels, every 10th step after burn-in is plotted. The vectors MU, SIGMA.BAT,
and SIGMA.ERR are not mutually independent. In particular, values of MU far from x̄..

tend to be associated with large values of ICC.

of accepting H0, for various possible values of θA > 0. We still have no
idea how large θA might actually be. Perhaps this difficulty has been made
more obscure by the terminology of hypothesis testing, but it has not gone
away.

In Problem 9.17 we show data for which θ̂A < 0, but the Gibbs Sampler of
Example 9.3 gives useful Bayesian interval estimates for all parameters (see
Figure 9.12 on page 236). Several additional problems show real data that
result in θ̂A > 0. For a comparison the models of Examples 9.2 and 9.3, see
Problem 9.22.

Note: We have seen that the traditional method of moments for esti-
mating σA can give negative values. Computationally intensive meth-
ods are available to find approximate maximum likelihood estimates
(MLEs) of σA. Except when the MLE of σA is small, these methods
can also provide approximate confidence intervals. These MLE results
are numerically similar to Bayesian results based on a noninformative
prior from a Gibbs Sampler. When the MLE of σA is small, computa-
tional difficulties involving collinearity arise in finding MLE confidence
intervals.
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In this chapter we have seen situations in which a Bayesian approach
has something to offer over a traditional one, and in which a Gibbs Sampler
is a useful method for computing approximate posterior distributions. An
inconvenience in using a Gibbs Sampler is the need to specify partial condi-
tional distributions upon which to base the programming. In Chapter 10 we
show how BUGS software can do Gibbs Sampling simply by specifying the
model, but without having to write and explicitly program partial conditional
distributions.

9.4 Problems

Problems for Section 9.1, Estimating Prevalence of a Disease
In working these problems, modify the program of the example as appropriate.

9.1 Estimating prevalence with an informative prior.

a) According to the distribution BETA(1, 10), what is the probability that π
lies in the interval (0, 0.2)?

b) If the prior BETA(1, 10) is used with the data of Example 9.1, what is the
95% Bayesian interval estimate of π?

c) What parameter β would you use so that BETA(1, β) puts about 95%
probability in the interval (0, 0.05)?

d) If the beta distribution of part (c) is used with the data of Example 9.1,
what is the 95% Bayesian interval estimate of π?

Hints: c) Use beta = seq(1:100); x = pbeta(.05, 1, beta); min(beta[x>=.95]).

Explain. d) The mean of the posterior distribution π|X, Y is about 1.8%

9.2 In Example 5.2 on p118, the test has η = .99 and θ = .97, the data
are n = 250 and A = 6, and equation (9.1) on p212 gives an absurd negative
estimate of prevalence, π = −0.62%.

a) In this situation, with a uniform prior, what are the Bayesian point es-
timate and (two-sided) 95% interval estimate of prevalence? Also, find a
one-sided 95% interval estimate that provides an upper bound on π.

b) In part (a), what estimates result from using the prior BETA(1, 30)?

Comment: a) See Figure 9.10. Two-sided 95% Bayesian interval: (0.03%, 2.9%). Cer-

tainly, this is more useful than a negative estimate, but don’t expect a narrow interval

with only n = 250 observations. Consider that a flat-prior 95% Bayesian interval

estimate of τ based directly on t = 6/250 is roughly (1%, 5%).

9.3 In each part below, use the uniform prior distribution on π and suppose
the test procedure described results in A = 24 positive results out of n = 1000
subjects.

a) Assume the test used is not a screening test, but a gold standard test,
so that η = θ = 1. Follow through the code for the Gibbs Sampler in
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Example 9.1, and determine what values of X and Y must always occur.
Run the sampler. What Bayesian interval estimate do you get? Explain
why the result is essentially the same as the Bayesian interval estimate you
would get from a uniform prior and data indicating 24 infected subjects
in 1000, using the code qbeta(c(.025,.975), 25, 977).

b) Screening tests exist because it is not feasible to administer a gold stan-
dard test to a large group of subjects. So the situation of part (a) is not
likely to occur in the real world. But it does often happen that everyone
who gets a positive result on the screening test is given a gold standard
test, and no gold standard tests are given to subjects with negative screen-
ing test results. Thus, in the end, we have η = 99% and θ = 1. In this case,
what part of the Gibbs Sampler becomes deterministic? Run the Gibbs
Sampler with these values and report the result.

c) Why are the results from parts (a) and (b) not much different?

Hints: a) The Gibbs Sampler simulates a large sample precisely from BETA(25, 977)

and cuts off appropriate tails. Why these parameters? Run the additional code:

set.seed(1237); pie=c(.5, rbeta(m-1, 25, 977)); mean(pie[(m/2):m])

c) Why no false positives among the 24 in either (a) or (b)? Consider false negatives.

9.4 Running averages and burn-in periods. In simulating successive steps
of a Markov Chain we know that it may take a number of steps before the
running averages of the resulting values begin to stabilize to the mean value
of the limiting distribution. In a Gibbs Sampler it is customary to disregard
values of the chain during an initial burn-in period. Throughout this chapter
we rather arbitrarily choose to use m = 50 000 iterations and take the burn-in
period to extend for the first m/4 or m/2 steps. These choices have to do
with the appearance of stability in the running average plot and how much
simulation error we are willing to tolerate. For example, the running averages
in the righthand panel of Figure 9.2 (page 215) seem to indicate smooth
convergence of the mean of the π-process to the posterior mean after 25 000
iterations. The parts below provide an opportunity to explore the perception
of stability and variations in the length of the burn-in period. Use m = 50 000
iterations throughout.

a) Rerun the Gibbs Sampler of Example 9.1 three times with different seeds,
which you select and record. How much difference does this make in the
Bayesian point and interval estimates of π? Use one of the same seeds in
parts (b) and (c) below.

b) Redraw the running averages plot of Figure 9.2 so that the vertical plotting
interval is (0, 0.5). (Change the plot parameter ylim.) Does this affect
your perception of when the process “becomes stable”? Repeat, letting
the vertical interval be (0.20, 0.22), and comment.

c) Change the code of the Gibbs Sampler in the example so that the burn-in
period extends for 15 000 steps. Compared to the results of the example,
what change does this make in the Bayesian point and interval estimates
of π? Repeat for a burn-in of 30 000 steps and comment.
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Figure 9.10. History plot (top) and histogram of 25,000 sampled prevalence values
after burn-in for Problem 9.2. Here, traditional methods give a nonsensical negative
point estimate of prevalence π. But a one-sided 95% Bayesian interval provides a
useful upper bound on π (dotted line). Compare with Figure 9.1 on page 214.

9.5 Thinning. From the ACF plot in Figure 9.2 on p215, we see that the
autocorrelation is near 0 for lags of 25 steps or more. Also from the right
hand plot in this figure it seems that the process of Example 9.1 stabilizes
after about 15 000 iterations. One method suggested to mitigate effects of
autocorrelation, called thinning, is to consider observations after burn-in
located sufficiently far apart that autocorrelation is not an issue.

a) Use the data and prior of Example 9.1. What Bayesian point estimate
and probability interval do you get by using every 25th step, starting
with step 15 000? Make a histogram of the relevant values of PI. Does
thinning in this way have an important effect on the inferences?

b) Use the statement acf(PI[seq(15000, m, by=25)]) to make the ACF
plot of these observations. Explain what you see.

9.6 Density estimation. A histogram, as in Figure 9.1, is one way to show
the approximate posterior distribution of π. But the smooth curve drawn
through the histogram there reminds us that we are estimating a continuous
posterior distribution. A Gibbs Sampler does not give us the functional form of
the posterior density function, but the smooth curve is a good approximation.
After the Gibbs Sampler of Example 9.1 is run, the following additional code
superimposes an estimated density curve on the histogram of sampled values.
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est.d = density(PI[aft.brn], from=0, to=1); mx = max(est.d$y)

hist(PI[aft.brn], ylim=(0, mx), prob=T, col="wheat")

lines(est.d, col="darkgreen")

median(PI[aft.brn]); est.d$x[est.d$y==mx]

a) Run the code to verify that it gives the result claimed. In the R Session
window, type ?density and browse the information provided on ker-
nel density estimation. In this instance, what is the reason for the
parameters from=0, to=1? What is the reason for finding mx before the
histogram is made? In this book, we have used the mean of sampled val-
ues after burn-in as the Bayesian point estimate of π. Possible alternative
estimates of π are the median and the mode of the sampled values after
burn-in. Explain how the last statement in the code roughly approximates
the mode.

b) To verify how well kernel density estimation works in one example, do
the following: Generate 50 000 observations from BETA(2, 3), make a
histogram of these observations, superimpose a kernel density-estimated
curve in one color, and finally superimpose the true density function of
BETA(2, 3) as a dotted curve in different color. Also, find the estimated
mode and compare it to the exact mode 1/3 of this distribution.

9.7 So far as is known, a very large herd of livestock is entirely free of a
certain disease (π = 0). However, in a recent routine random sample of n = 100
of these animals, two have tested positive on a screening test with sensitivity
95% and specificity 98%. One “expert” argues that the two positive tests
warrant slaughtering all of the animals in the herd. Based on the specificity
of the test, another “expert” argues that seeing two positive tests out of 100
is just what one would expect by chance in a disease-free herd, and so mass
slaughter is not warranted by the evidence.

a) Use a Gibbs Sampler with a flat prior to make a one-sided 95% probability
interval that puts an upper bound on the prevalence. Based on this result,
what recommendation might you make?

b) How does the posterior mean compare with the estimate from equa-
tion (9.1) on p212?

c) Explain what it means to believe the prior BETA(1, 40). Would your rec-
ommendation in part (a) change if you believed this prior?

d) What Bayesian estimates would you get with the prior of part (c) if there
are no test-positive animals among 100? In this case what part of the
Gibbs Sampling process becomes deterministic?

Comments: In (a) and (b), the Bayesian point estimate and the estimate from equa-

tion (9.1) are about the same. If there are a few thousand animals in the herd, these

results indicate there might indeed be at least one infected animal. Then, if the

disease is one that may be highly contagious beyond the herd or if diseased animals

pose a danger to humans, we could be in for serious trouble. If possible, first steps
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might be to quarantine this herd for now, find the two animals that tested positive,

and quickly subject them to a gold standard diagnostic test for the disease. That

would provide more reliable information than does the Gibbs Sampler based on the

screening test results. d) Used alone, a screening test with η = 95% and θ = 98%

applied to a relatively small proportion of the a herd seems a very blunt instrument

for trying to say whether the herd is free of a disease.

Problems for Section 9.2, Estimating Normal Mean and Variance

9.8 Write and execute R code to make diagnostic graphs for the Gibbs
Sampler of Example 9.2 showing ACFs and traces (similar to the plots in
Figure 9.2). Comment on the results.

9.9 Run the code below. Explain step-by-step what each line (beyond the
first) computes. How do you account for the difference between diff(a)
and diff(b)?

x.bar = 9.60; x.sd = 2.73; n = 41

x.bar + qt(c(.025, .975), n-1)*x.sd/sqrt(n)

a = sqrt((n-1)*x.sd^2 / qchisq(c(.975,.025), n-1)); a; diff(a)

b = sqrt((n-1)*x.sd^2 / qchisq(c(.98,.03), n-1)); b; diff(b)

9.10 Suppose we have n = 5 observations from a normal population that
can be summarized as x̄ = 28.31 and s = 5.234.

a) Use traditional methods based on Student’s t and chi-squared distribu-
tions to find 95% confidence intervals for µ and σ.

b) In the notation of Example 9.2, use prior distributions with parameters
µ0 = 25, σ0 =

√
θ0 = 2, α0 = 30, and κ0 = 1000, and use a Gibbs Sampler

to find 95% Bayesian interval estimates for µ and σ. Discuss the priors.
Make diagnostic plots. Compare with the results of part (a), and comment.

c) Repeat part (b), but with µ0 = 0, σ0 = 1000, α0 = 0.01, and κ0 = 0.01.
Compare with the results of parts (a) and (b), and comment.

Hints: In (a)-(c), the sample size is small, so an informative prior is influential. In

(a) and (c): (21.8, 34.8) for µ; (3, 15) for σ. Roughly.

9.11 Before drawing inferences, one should always look at the data to see
whether assumptions are met. The vector x in the code below contains the
n = 41 observations summarized in Example 9.2.

x = c( 8.50, 9.75, 9.75, 6.00, 4.00, 10.75, 9.25, 13.25,

10.50, 12.00, 11.25, 14.50, 12.75, 9.25, 11.00, 11.00,

8.75, 5.75, 9.25, 11.50, 11.75, 7.75, 7.25, 10.75,

7.00, 8.00, 13.75, 5.50, 8.25, 8.75, 10.25, 12.50,

4.50, 10.75, 6.75, 13.25, 14.75, 9.00, 6.25, 11.75, 6.25)

mean(x)

var(x)

shapiro.test(x)
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Figure 9.11. A boxplot, stripchart, and normal quantile plot of the height differ-
ences in Example 9.2. The overall impression is the data are consistent with the
assumption of a normally distributed population. See Problem 9.11.

par(mfrow=c(1,2))

boxplot(x, at=.9, notch=T, ylab="x",

xlab = "Boxplot and Stripchart")

stripchart(x, vert=T, method="stack", add=T, offset=.75, at = 1.2)

qqnorm(x)

par(mfrow=c(1,1))

a) Describe briefly what each statement in the code does.
b) Comment on the graphical output in Figure 9.11. (The angular sides of the

box in the boxplot, called notches, indicate a nonparametric confidence
interval for the population median.) Also comment on the result of the
test. Give several reasons why it is reasonable to assume these data come
from a normal population.

Note: Data are from [MR58], also listed and discussed in [Rao89] and [Tru02]. Each

data value in x is the difference between a morning and an evening height value.

Each height value is the average of four measurements on the same subject.

9.12 Modify the code for the Gibbs Sampler of Example 9.2 as follows to
reverse the order of the two key sampling steps at each passage through the
loop. Use the starting value MU[1]= 5. At each step i, first generate THETA[i]
from the data, the prior on θ, and the value MU[i-1]. Then generate MU[i]
from the data, the prior on µ, and the value THETA[i]. Compare your results
with those in the example, and comment.

9.13 (Theoretical) In Example 9.2, the prior distribution of the parameter
θ = σ2 is of the form θ ∼ IG(α0, κ0) so that p(θ) ∝ θ−(α0+1) exp(−κ0/θ). Also
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the data x are normal with xi randomly sampled from NORM(µ, σ), so that
the likelihood function is

p(x|µ, θ) ∝ θn/2 exp

{
− 1

2θ

n∑

i=1

(xi − µ)2
}

.

a) By subtracting and adding x̄, show that the exponential in the likelihood
function can be written as exp{− 1

2θ [(n− 1)s2 + n(x̄− µ)2]}.
b) The distribution of θ|x, µ used in the Gibbs Sampler is based on the

product p(θ|x, µ) ∝ p(θ) p(x|µ, θ). Expand and then simplify this product
to verify that θ|x, µ ∼ IG(αn, κn), where αn and κn are as defined in the
example.

Problems for Section 9.3, Estimating Variance Components

9.14 The R code below was used to generate the data used in Example 9.3.
If you run the code using the same (default) random number generator in R
we used and the seed shown, you will get the same data.

set.seed(1212)

g = 12 # number of batches

r = 10 # replications per batch

mu = 100; sg.a = 15; sg.e = 9 # model parameters

a.dat = matrix(rnorm(g, 0, sg.a), nrow=g, ncol=r)

# ith batch effect across ith row

e.dat = matrix(rnorm(g*r, 0, sg.e), nrow=g, ncol=r)

# g x r random item variations

X = round(mu + a.dat + e.dat) # integer data

X

> X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 103 113 88 96 89 88 80 92 89 81

[2,] 143 116 126 127 132 121 129 148 129 119

[3,] 107 107 98 103 113 104 99 103 98 109

[4,] 71 72 89 63 85 71 75 76 98 57

[5,] 105 101 113 110 109 101 114 114 113 107

[6,] 88 93 100 91 98 105 103 91 123 110

[7,] 71 52 67 59 67 67 60 68 62 53

[8,] 115 102 93 111 130 114 97 103 112 98

[9,] 58 70 65 78 67 60 74 80 47 68

[10,] 133 119 130 136 133 116 131 118 140 135

[11,] 103 101 97 110 125 107 115 106 110 94

[12,] 83 106 86 91 88 107 92 98 88 95

a) Run the code and verify whether you get the same data. Explain the
results of the statements a.dat, var(a.dat[1,]), var(a.dat[,1]), and
var(as.vector(e.dat)). How do the results of the first and the second
statements arise? What theoretical values are approximated (not very well
because of the small sample size) by the last two statements.
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Figure 9.12. Histograms of simulated posteriors with estimated posterior densities
for Problem 9.17. Results are from the vectors MU, SIGMA.BAT, SIGMA.ERR, and ICC of
the Gibbs Sampler after burn-in. Indications of the 95% Bayesian interval estimate
(one-sided for SIGMA.BAT and ICC). Compare with Figure 9.7 on page 225.

b) Explain why the following additional code computes MS(Batch) and
MS(Error). How would you use these quantities to find the unbiased esti-
mate of θA shown in the example?

X.bar = apply(X, 1, mean); X.sd = apply(X, 1, sd)

MS.Bat = r*var(X.bar); MS.Err = mean(X.sd^2)

Hints: a) By default, matrices are filled by columns; shorter vectors recycle. The

variance components of the model are estimated.

9.15 (Continuation of Problem 9.14) Computation and derivation of fre-
quentist confidence intervals related to Example 9.3.

a) The code below shows how to find the 95% confidence intervals for µ, θ,
and ρI based on information in Problem 9.14 and Example 9.3.

mean(X.bar) + qt(c(.025,.975), g-1)*sqrt(MS.Bat/(g*r))

df.Err*MS.Err/qchisq(c(.975,.025), df.Err)

R = MS.Bat/MS.Err; q.f = qf(c(.975,.025), g-1, g*r-g)

(R - q.f)/(R + (r-1)*q.f)

b) (Intermediate) Derive the confidence intervals in part (b) from the distri-
butions of the quantities involved.

Hint: b) For ρI , start by deriving a confidence interval for ψ = θA/θ. What multiple

of R is distributed F(g − 1, g(r − 1))?
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9.16 Figure 9.8 on page 227 shows four diagnostic plots for the simulated
posterior distribution of σA in the Gibbs Sampler of Example 9.3. Make similar
diagnostic plots for the posterior distributions of µ, σ, and ρI .

9.17 Small contribution of batches to the overall variance. Suppose the
researchers who did the experiment in Example 9.3 find a way to reduce the
batch component of variance. For the commercial purpose at hand, that would
be important progress. But when they try to analyze a second experiment,
there is a good chance that standard frequentist analysis will run into trouble.
The code below is essentially the same as in Problem 9.14, but with the
parameters and the seed changed. Group means and standard deviations,
sufficient for running the Gibbs sampler of Example 9.3 are shown as output.

set.seed(1237)

g = 12; r = 10

mu = 100; sg.a = 1; sg.e = 9

a.dat = matrix(rnorm(g, 0, sg.a), nrow=g, ncol=r)

e.dat = matrix(rnorm(g*r, 0, sg.e), nrow=g, ncol=r)

X = round(mu + a.dat + e.dat)

X.bar = apply(X, 1, mean); X.sd = apply(X, 1, sd)

round(rbind(X.bar, X.sd), 3)

> round(rbind(X.bar, X.sd), 3)

[,1] [,2] [,3] [,4] [,5] [,6]

X.bar 96.90 103.700 97.300 100.900 95.100 95.900

X.sd 11.77 12.781 8.693 10.418 6.244 7.505

[,7] [,8] [,9] [,10] [,11] [,12]

X.bar 94.900 99.00 98.200 98.200 98.700 102.400

X.sd 9.871 10.76 10.304 6.356 11.146 8.289

a) Figure 9.6 shows boxplots for each of the 12 batches simulated above.
Compare with Figure 9.5 on page 222. How can you judge from these
two figures that the batch component of variance is smaller here than in
Example 9.3?

b) Run the Gibbs Sampler of Section 9.3 for these data using the same un-
informative priors as shown in the code there. You should get Bayesian
interval estimates for σA =

√
θA and ρI that cover the cover the val-

ues used to generate the data X. Also, you should get Bayesian interval
estimates for µ and σ that cover their “known” values. See Figure 9.12.

9.18 Continuation of Problem 9.17. Negative estimates of θA and ρI .

a) Refer to results stated in Problems 9.14 and 9.15. Show that the unbiased
estimate of θA is negative. Also, show that the 95% confidence interval
for ρI includes negative values. Finally, find 95% confidence intervals for µ
and σ =

√
θ and compare them with corresponding results in from the

Gibbs Sampler in Problem 9.17.
b) Whenever R = MS(Batch)/MS(Error) < 1, the unbiased estimate θ̂A

of θA is negative. When the batch component of variance is relatively
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small, this has a good chance of occurring. Evaluate P{R < 1} when
σA = 1, σ = 9, g = 12, and r = 10, as in this problem.

c) The null hypothesis H0 : θA = 0 is accepted (against H1 : θA > 0) when
R is smaller than the 95th quantile of the F distribution with g − 1 and
g(r − 1) degrees of freedom. Explain why this null hypothesis is always
accepted when θ̂A < 0.

Hints: b) Exceeds 1/2. c) The code qf(.95, 11, 108) gives a result exceeding 1.

9.19 Calcium concentration in turnip leaves (% dry weight) is assayed for
four samples from each of four leaves. Consider leaves as “batches.” The data
are shown below as R code for the matrix X in the program of Example 9.3;
that is, each row of X corresponds to a batch.

X = matrix(c(3.28, 3.09, 3.03, 3.03,

3.52, 3.48, 3.38, 3.38,

2.88, 2.80, 2.81, 2.76,

3.34, 3.38, 3.23, 3.26), nrow=4, ncol=4, byrow=T)

a) Run the program, using the same noninformative prior distributions as
specified there, to find 95% Bayesian interval estimates for µ, σA, σ, and ρI

from these data.
b) Suppose the researchers have previous experience making calcium deter-

minations from such leaves. While calcium content and variability from
leaf to leaf can change from one crop to the next, they have observed that
the standard deviation σ of measurements from the same leaf is usually
between 0. 075 and 0.100. So instead of a flat prior for σ, they choose
IG(α0 = 35, λ0 = 0.25). In these circumstances, explain why this is a
reasonable prior.

c) With flat priors for µ, and θA, but the prior of part (b) for θ, run the
Gibbs Sampler to find 95% Bayesian interval estimates for µ, σA, σ, and ρI

from the data given above. Compare with your answers in part (a), and
comment.

Note: Data are from page 239 of [SC80]. The unbiased estimate of θA = σ2
A is

positive here. Estimation of σA by any method is problematic because there are so
few batches.

9.20 In order to assess components of variance in the two-stage manufacture of a
dye, researchers obtain measurements on five samples from each of six batches. The
data are shown below as R code for the matrix X in the program of Example 9.3;
that is, each row of X corresponds to a batch.

X = matrix(c(1545, 1440, 1440, 1520, 1580,

1540, 1555, 1490, 1560, 1495,

1595, 1550, 1605, 1510, 1560,

1445, 1440, 1595, 1465, 1545,

1595, 1630, 1515, 1635, 1625,

1520, 1455, 1450, 1480, 1445), 6, 5, byrow=T)
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a) Use these data to find unbiased point estimates of µ, σA, and σ. Also find
95% confidence intervals for µ, σ, and ρI (see Problem 9.15).

b) Use a Gibbs Sampler to find 95% Bayesian interval estimates for µ, σA, σ,
and ρI from these data. Specify noninformative prior distributions as in
Example 9.3. Make diagnostic plots.

Answers: b) Roughly: (1478, 1578) for µ; for (15, 115) for σA. See [BT73] for a

discussion of these data, reported in [Dav57].

9.21 In order to assess components of variance in the two-stage manufac-
ture of a kind of plastic, researchers obtain measurements on four samples
from each of 22 batches. Computations show that MS(Error) = 23.394. Also,
sums of the four measurements from each of the 22 batches are as follows:

218 182 177 174 208 186

206 192 187 154 208 176

196 179 181 158 158 198

160 178 148 194

a) Compute the batch means, and thus x̄.. and MS(Batch). Use your results
to find the unbiased point estimates of µ, θA, and θ.

b) Notice that the batch standard deviations si, i = 1, . . . , 12, enter into
the program of Example 9.3 only as

∑
i(r − 1)s2

i . Make minor changes
in the program so that you can use the information provided to find
90% Bayesian interval estimates of µ, σA, σ, and ρI , based on the same
noninformative prior distributions as in the example.

Note: Data are reported in [Bro65], page 325. Along with other inferences from these

data, the following traditional 90% confidence intervals are given there: (43.9, 47.4)

for µ; (17.95, 31.97) for θ; and (0.32, 1.62) for ψ = θA/θ. (See Problem 9.15.)

9.22 Using the correct model. To assess the variability of a process for
making a pharmaceutical drug, measurements of potency were made on one
pill from each of 50 bottles. These results are entered into a spreadsheet as 10
rows of 5 observations each. Row means and standard deviations are shown
below.

Row 1 2 3 4 5 6 7 8 9 10

Mean 124.2 127.8 119.4 123.4 110.6 130.4 128.4 127.6 122.0 124.4

SD 10.57 14.89 11.55 10.14 12.82 9.99 12.97 12.82 16.72 8.53

a) Understanding from a telephone conversation with the researchers that
the rows correspond to different batches of the drug made on different
days, a statistician uses the Gibbs Sampler of Example 9.3 to analyze the
data. Perform this analysis for yourself.

b) The truth is that all 50 observations come from the same batch. Record-
ing the data in the spreadsheet by rows was just someone’s idea of a
convenience. So the data would properly be analyzed without regard
to bogus “batches” according to a Gibbs Sampler as in Example 9.2.
(Of course, this requires summarizing the data in a different way. Use
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s2 = [9MS(Batch) + 40MS(Error)]/49, where s is the standard deviation
of all 50 observations.) Perform this analysis, compare with the results of
part (a), and comment.

Note: Essentially a true story, but with data simulated from NORM(125, 12) replac-

ing unavailable original data. The most important “prior” of all is to get the model

right.


