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Introduction to Bayesian Estimation

The rest of this book deals with Bayesian estimation. This chapter uses examples
to illustrate the fundamental concepts of Bayesian point and interval estimation. It
also provides an introduction to Chapters 9 and 10 where more advanced examples
require computationally intensive methods.

Bayesian and frequentist statistical inference take very different approaches to
statistical decision making.

• The frequentist view of probability, and thus of statistical inference, is based on
the idea of an experiment that can be repeated many times.

• The Bayesian view of probability and of inference is based on a personal as-
sessment of probability and on observations from a single performance of an
experiment.

These different views lead to fundamentally different procedures of estimation, and
the interpretations of the resulting estimates are also fundamentally different. In
practical applications, both ways of thinking have advantages and disadvantages,
some of which we will explore here.

Statistics is a relatively young science. For example, interval estimation has grad-
ually become common in scientific research and business decision making only within
the past 75 years. On this time scale it seems strange to talk about “traditional”
approaches. However, frequentist viewpoints are currently much better established,
particularly in scientific research, than Bayesian ones. Recently, the use of Bayesian
methods has been increasing, partly because the Bayesian approach seems to be able
to get more useful solutions than frequentist ones in some applications and partly
because improvements in computation have made Bayesian methods increasingly
convenient to apply in practice. The Gibbs sampler is one computationally intensive
method that is broadly applicable in Bayesian estimation.

For some of the very simple examples considered here, Bayesian and frequentist
methods give similar results. But that is not the main point. We hope you will
gain some appreciation that Bayesian methods are sometimes the most natural and
useful ones in practice. Also, we hope you will begin to appreciate the essential role
of computation in Bayesian estimation.

For most people, the starkest contrast between frequentist and Bayesian ap-
proaches to analyzing an experiment or study is that Bayesian inference provides
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the opportunity—even imposes the requirement—to take explicit notice of “infor-
mation” that is available before any data are collected. That is where we begin.

8.1 Prior Distributions

The Bayesian approach to statistical inference treats population parameters as ran-
dom variables (not as fixed, unknown constants). The distributions of these parame-
ters are called prior distributions. Often both expert knowledge and mathematical
convenience play a role in selecting a particular type of prior distribution. This is
easiest to explain and to understand in terms of examples. Here we introduce four
examples that we carry throughout this chapter.

Example 8.1. Election polling. Suppose Proposition A is on the ballot for an upcom-
ing statewide election, and a political consultant has been hired to help manage
the campaign for its adoption. The proportion π of prospective voters who cur-
rently favor Proposition A is the population parameter of interest here. Based on
her knowledge of the politics of the state, the consultant’s judgment is that the
proposition is almost sure to pass, but not by a large margin. She believes that the
most likely proportion π of voters in favor is 55% and that the proportion is not
likely to be below 51% or above 59%.

It is reasonable to try to use the beta family of distributions to model the expert’s
opinion of the proportion in favor because distributions in this family take values
in the interval (0, 1), as do proportions. Beta distributions have density functions of
the form

p(π) = Kπα−1(1− π)β−1

∝ πα−1(1− π)β−1,

for 0 < π < 1, where α, β > 0 and K is the constant such that
∫ 1

0
p(π) dπ = 1. Here

we adopt two conventions that are common in Bayesian discussions: the use of the
letter p instead of f to denote a density function, and the use of the symbol ∝ (read
“proportional to”) instead of = so that we can avoid specifying a constant whose
exact value is unimportant to the discussion. The essential factor of the density
function that remains when the constant is suppressed is called the kernel of the
density function (or of its distribution).

A member of the beta family that corresponds reasonably well to the expert’s
opinion has α0 = 330 and β0 = 270. (Its density is the fine-line curve in Figure 8.1.)
This is a reasonable choice of parameters for several reasons.

• This beta distribution is centered near 55% by any of the common measures of
centrality. By analytic methods one can show that the mean of this distribution
is α0/(α0+β0) = 330/600 = 55.00% and that its mode is (α0−1)/(α0+β0−2) =
329/598 = 55.02%. Computational methods show the median to be 55.01%.
(The R function qbeta(.5, 330, 270) returns 0.5500556.) The mean is the
most commonly used measure of centrality. Here the mean, median, and mode
are so nearly the same that it doesn’t make any practical difference which is
used.
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Figure 8.1. Prior and posterior densities for the proportion π of the population
in favor of ballot Proposition A (see Examples 8.1 and 8.5). The prior (fine line) is
BETA(330, 270) with mean 55.0%. Based on a poll of 1000 subjects with 62.0% in
favor, the more concentrated posterior (heavy) is BETA(950, 650) with mean 59.5%.

• Numerical integration shows that these parameters match the expert’s prior
probability interval fairly well: P{0.51 < π < 0.59} ≈ 0.95. (The R code
pbeta(.59, 330, 270) - pbeta(.51, 330, 270) returns 0.9513758.)

Of course, slightly different choices for α0 and β0 would match the expert’s
opinion about as well. It is not necessary to be any fussier in choosing the parameters
than the expert was in specifying her hunches. Also, distributional shapes other than
the beta might match the expert’s opinion just as well. But we choose a member of
the beta family because it makes the mathematics relatively easy in what comes later
and because we have no reason to believe that the shape of our beta distribution is
inappropriate here. (See Problems 8.2 and 8.3.)

If the consultant’s judgments about the political situation are correct, then they
may be helpful in managing the campaign. If she too often brings bad judgment to
her clients, her reputation will suffer and she will be out of the political consulting
business before long. Fortunately, as we see in the next section, the details of her
judgments become less important if we also have some polling data to rely upon. ♦

Example 8.2. Counting mice. An island in the middle of a river is one of the last
known habitats of an endangered kind of mouse. The mice rove about the island in
ways that are not fully understood and so are taken as random.

Ecologists are interested in the average number of mice to be found in particular
regions of the island. To do the counting in a region they set many traps there at
night, using bait that is irresistible to mice at close range. In the morning they count
and release the mice caught. It seems reasonable to suppose that almost all of the
mice in the region where traps were set during the previous night were caught and
that the number of them on any one night has a Poisson distribution. The purpose
of the trapping is to estimate the mean λ of this distribution.
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Even before the trapping is done the ecologists doing this study have some
information about λ. For example, although the mice are quite shy, there have been
occasional sightings of them in almost all regions of the island, so it seems likely
that λ > 1. On the other hand, from what is known of the habits of the mice and
the food supply in the regions, it seems unlikely that there would be as many as 25
of them in any one region at a given time.

In these circumstances, it seems reasonable to use a gamma distribution as a
prior distribution for λ. This gamma distribution has the density

p(λ) ∝ λα−1e−κλ,

for λ > 0, where the shape parameter α and the rate parameter κ must both be
positive. First, we choose a gamma distribution because it puts all of its probability
on the positive half line, and λ must surely have a positive value. Second, we choose
a member of the gamma family because it simplifies some important computations
that we need to do later.

Using straightforward calculus, one can show that a distribution in the gamma
family has mean α/κ, mode (α − 1)/κ, and variance α/κ2. These distributions are
right-skewed, with the skewness decreasing as α increases.

One reasonable choice for a prior distribution on λ is a gamma distribution with
α0 = 4 and κ0 = 1/3. Reflecting the skewness, the mean 12, median 11.02, and
mode 9 are noticeably different. (We obtained the median using R: qgamma(.5, 4,

1/3) returns 11.01618. Also, see Problem 8.8.) Numerical methods also show that
P{λ < 25} = 0.97. (In R, pgamma(25, 4, 1/3) returns 0.9662266.) All of these
values are consistent with the expert opinions of the ecologists.

It is clear that the experience of the ecologists with the island and its endangered
mice will influence the course of this investigation in many ways: dividing the island
into meaningful regions, modelling the randomness of mouse movement as Poisson,
deciding how many traps to use and where to place them, choosing a kind of bait
that will attract mice from a region of interest but not from all over the island, and
so on. The expression of some of their background knowledge as a prior distribution
is perhaps a relatively small use of their expertise. But a prior distribution is a
necessary starting place for Bayesian inference, and it is perhaps the only aspect of
expert opinion that will be explicitly tempered by the data that are collected. ♦

Example 8.3. Weighing an object. A construction company buys reinforced concrete
beams with a nominal weight of 700 lb. Experience with a particular supplier of
these beams has shown that their beams very seldom weigh less than 680 or more
than 720 lb. In these circumstances it may be convenient and reasonable to use
NORM(700, 10) as the prior distribution of the weight of a randomly chosen beam
from this supplier.

Usually, the exact weight of a beam is not especially important, but there are
some situations in which it is crucial to know the weight of a beam more precisely.
Then a particular beam is selected and weighed several times on a scale in order to
determine its weight more exactly.

Theoretically, a frequentist statistician would ignore “prior” or background ex-
perience in doing statistical inference, basing statistical decisions only on the data
collected when a beam is weighed. In real life it is not so simple. For example, the
design of the weighing experiment will very likely take past experience into account
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Figure 8.2. Prior and posterior densities for the population proportion π favoring
Proposition B (see Problem 8.1). Here the prior (fine line) reflects strong optimism
that the proposition is leading. The posterior (heavy line), taking into account results
of a relatively small poll with 62% opposed, does little to dampen the optimism.

in one way or another. (For example, if you are going to weigh things, then you need
to know whether you will be be using a laboratory balance, a truck scale, or some
intermediate kind of scale. And if you need more precision than the scale will give
in a single measurement, you may need to weigh each object several times and take
the average.) For the Bayesian statistician the explicit codification of some kinds of
background information into a prior distribution is a required first step. ♦

Example 8.4. Precision of hemoglobin measurements. A hospital has just purchased
a device for the assay of hemoglobin (Hgb) in the blood of newborn babies (in g/dl).
Considering the claims of the manufacturer and experience with competing meth-
ods of measuring Hgb, it seems reasonable to suppose the machine gives unbiased
normally distributed results X with a standard deviation σ somewhere between
0.25g/dl and 1g/dl.

For mathematical convenience in Bayesian inference, it is customary to express
prior distributions for the variability of a normal distribution in terms of a gamma
distribution on the precision τ = 1/σ2. In our example, we might seek a prior
distribution on τ with P{1/4 < σ < 1} = P{1/16 < σ2 < 1} = P{1 < τ <
16} ≈ 0.95. One reasonable choice, under which this interval has probability 0.96,
is τ ∼ GAMMA(α0 = 3, κ0 = 0.75).

When τ has a gamma prior GAMMA(α, κ), we say that θ = 1/τ = σ2 has an an
inverse gamma prior distribution IG(α, κ). This distribution family has density

p(θ) =
κα

Γ (α)
θ−(α+1) e−κ/θ ∝ θ−(α+1) e−κ/θ,

for θ > 0. The mode of this distribution is κ/(α + 1) and, when α > 1, its mean is
κ/(α− 1).



192 8 Introduction to Bayesian Estimation

In R, simulated values and quantiles of IG can be found as reciprocals of
rgamma and qgamma, respectively. Cumulative probabilities can be found by using
reciprocal arguments in pgamma. For example, with α0 = 3, κ0 = .75, we find
Med(θ) = 1/Med(τ) = 0.28 with the code 1/qgamma(.5, 3, .75), and we get 0.50
from pgamma(1/0.28047, 3, .75). ♦

8.2 Data and Posterior Distributions

The second step in Bayesian inference is to collect data and to combine the infor-
mation in the data with the expert opinion represented by the prior distribution.
The result is a posterior distribution that can be used for inference.

Once the data are available, we can use Bayes’ Theorem to compute the posterior
distribution π|x. Equation (5.6), repeated here as (8.1), states an elementary version
of Bayes’ Theorem for an observed event E and a partition {A1, A2, . . . , Ak} of the
sample space S.

P (Aj |E) =
P (Aj)P (E|Aj)∑k

i=1
P (Ai)P (E|Ai)

. (8.1)

This equation expresses a posterior probability P (Aj |E) in terms of the prior prob-
abilities P (Ai) and the conditional probabilities P (E|Ai).

Here we use a more general version of Bayes’ Theorem involving data x and a
parameter π:

p(π|x) =
p(π)p(x|π)∫
p(π)p(x|π) dπ

∝ p(π)p(x|π), (8.2)

where the integral is taken over all values of π for which the integrand is possible.
The proportionality symbol ∝ is appropriate because the integral is a constant. (In
case the distribution of π is discrete, the integral is interpreted as a sum.)

Thus the posterior distribution of π|x is found from the prior distribution of π
and the distribution of the data x given π. If π is a known constant, p(x|π) is
the density function of x; we might integrate it with respect to x to evaluate the
probability P (x ∈ A) =

∫
A

p(x) dx. However, when we use (8.2) to find a posterior,
we know the data x, and we view p(x|π) as a function of π. When viewed in this way,
p(x|π) is called the likelihood function of π. (Technically, the likelihood function
is defined only up to a positive constant.)

A convenient summary of of our procedure for finding the posterior distribution
with relationship (8.2) is to say

POSTERIOR ∝ PRIOR× LIKELIHOOD.

We now illustrate this procedure for each of the examples of the previous section.

Example 8.5. Election Polling (continued). Suppose n randomly selected registered
voters express opinions on Proposition A. What is the likelihood function, and how
do we use it to find the posterior distribution?

If the value of π were known, then the number x of the respondents in favor of
Proposition A is a random variable with the binomial distribution: (n

x) πx(1 − π)n−x,
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Figure 8.3. (a) Prior and posterior densities for the number of mice in a region.
(b) Likelihood function of the mouse data: 50 nights with a total of 256 mice trapped.
Because the prior density (fine line) is relatively flat, the data largely determine the
mode 5.166 of the posterior (heavy). The MLE λ̂ = 256/50 = 5.120 (mode of the
likelihood) is not far from the posterior mode. (See Examples 8.2 and 8.6.)

for x = 0, 1, 2, . . . , n. Now that we have data x, the likelihood function of π becomes
p(x|π) ∝ πx(1− π)n−x.

Furthermore, display (8.2) shows how to find the posterior distribution

p(π|x) ∝ πα0−1(1− π)β0−1 × πx(1− π)n−x

= πα0+x−1(1− π)β0+n−x−1 = παn−1(1− π)βn−1,

where we recognize the last line as the kernel of a beta distribution with parameters
αn = α0 +x and βn = β0 +n−x. It is easy to find the posterior in this case because
the (beta) prior distribution we selected has a functional form that is similar to that
of the (binomial) distribution of the data, yielding a (beta) posterior. In this case
we say that the beta is a conjugate prior for binomial data. (When nonconjugate
priors are used, special computational methods are often necessary; see Problems 8.5
and 8.6.)

Recall that the parameters of the prior beta distribution are α0 = 330 and
β0 = 270. If x = 620 of the n = 1000 respondents favor Proposition A, then
the posterior has a beta distribution with parameters αn = α0 + x = 950 and
βn = β0 + n− x = 650. Look at Figure 8.1 for a visual comparison of the prior and
posterior distributions. The density curves were plotted with the following R script.
(By using lines we can plot the prior curve on the same axes as the posterior.)

x = seq(.45, .7, .001)

prior = dbeta(x, 330, 270)

post = dbeta(x, 950, 650)

plot(x, post, type="l", ylim=c(0, 35), lwd=2,

xlab="Proportion in Favor", ylab="Density")

lines(x, prior)
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The posterior mean is 950/(950+650) = 59.4%, a Bayesian point estimate
of the actual proportion of the population currently in favor of Proposition A.
Also, according to the posterior distribution, P{0.570 < π < 0.618} = 0.95,
so that a 95% posterior probability interval for the proportion in fa-
vor is (57.0%, 61.8%). (In R, qbeta(.025, 950, 650) returns 0.5695848, and
qbeta(.975, 950, 650) returns 0.6176932.)

This probability interval resulting from Bayesian estimation is a straight-
forward probability statement. Based on the combined information from her
prior distribution and from the polling data, the political consultant now be-
lieves it is very likely that between 57% and 62% of the population currently
favors Proposition A. In contrast to a frequentist “confidence” interval, the
consultant can use the probability interval without the need to view the poll
as a repeatable experiment. ♦
Example 8.6. Counting mice (continued). Suppose that a region of the island is se-
lected where the gamma distribution with parameters α0 = 4 and κ0 = 1/3 is a
reasonable prior for λ. The prior density is p(λ) ∝ λα0−1e−κ0λ.

Over a period of about a year, traps are set out on n = 50 nights with the total
number of captures t =

∑50

i=1
xi = 256 for an average of 5.12 mice captured per

night. Thus the Poisson likelihood function of the data is

p(x|λ) ∝
n∏

i=1

λxie−λ = λte−nλ,

and the posterior distribution is

p(λ|x) ∝ λα0−1e−κ0λ × λte−nλ

= λα0+t−1e−(κ0+n)λ,

in which we recognize the kernel of the gamma distribution with parameters αn =
α0 + t and κn = κ0 + n. Thus the posterior mean for our particular prior and data
is

αn

κn
=

α0 + t

κ0 + n
=

4 + 256

1/3 + 50
=

260

50.33
= 5.166,

the posterior mode is (αn − 1)/κn = 259/50.33 = 5.146, and the posterior
median is 5.159. Based on this posterior distribution, a 95% probability inter-
val for λ is (4.56, 5.81). (In R, qgamma(.025, 260, 50.33) returns 4.557005, and
qgamma(.975, 260, 50.33) returns 5.812432.) The prior and posterior densities are
shown in Figure 8.3. ♦
Example 8.7. Weighing a beam (continued). Suppose that a particular beam is se-
lected from among the beams available. Recall that, according to our prior distribu-
tion, the weights of beams in this population is NORM(700, 10), so µ0 = 700 pounds
and σ0 = 10 pounds. The beam is weighed n = 5 times on a balance that gives
unbiased, normally distributed readings with a standard deviation of σ = 1 pound.
Denote the data by x = (x1, . . . , xn), where the xi are independent NORM(µ, σ),
and µ is the parameter to be estimated. Such data have the likelihood function

p(x|µ) ∝ exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
,
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where the distribution of µ is determined by the prior, and σ = 1 is known. Then
after some algebra (see Problem 8.12), the posterior is seen to be

p(µ|x) ∝ p(µ)p(x|µ) ∝ exp[−(µ− µn)2/2σ2
n],

which is the kernel of NORM(µn, σn), where

µn =

1
σ2
0
µ0 + n

σ2 x̄

1
σ2
0

+ n
σ2

and σ2
n =

1
1

σ2
0

+ n
σ2

.

It is common to use the term precision to refer to the reciprocal of a variance.
If we define τ0 = 1/σ2

0 , τ = 1/σ2, and τn = 1/σ2
n, then we have

µn =
τ0

τ0 + nτ
µ0 +

nτ

τ0 + nτ
x̄ and τn = τ0 + nτ.

Thus, we say that the posterior precision is the sum of the precisions of the prior
and the data, and that the posterior mean is a precision-weighted average of the
means of the prior and the data.

In our example, τ0 = 0.01, τ = 1, and τn = 5.01. Thus the weights are
0.01/5.01 ≈ 0.002 for the prior mean µ0 and 5/5.01 ≈ 0.998 for the mean x̄ of
the data. We see that the posterior precision is almost entirely due to the precision
of the data, and the value of the posterior mean is almost entirely due to the mean
of the sample. In this case, the sample of five relatively high-precision observations is
enough to concentrate the posterior and diminish the impact of the prior. (See Prob-
lem 8.11 and Figure 8.4 for the computation of the posterior mean and a posterior
probability interval.) ♦

Example 8.8. Precision of hemoglobin measurements (continued). Suppose researchers
use the new device to make Hgb determinations vi on blood samples from n = 42
randomly chosen newborns, and also make extremely precise corresponding labo-
ratory determinations wi on the same samples. Based in part on assumptions in
Example 8.4, we assume xi = vi − wi ∼ NORM(0, σ). Assuming the laboratory
measurements to be of “gold standard” quality, we ignore their errors and take
τ = 1/σ2 to be a useful measure of the precision of the new device. If we observe

s =
√∑

i
x2

i /n = 0.34 and use the prior distribution τ ∼ GAMMA(3, 0.75) of Ex-
ample 8.4, then what posterior probability intervals can we give for τ and for σ?

The likelihood function of the data x = (x1, . . . , xn) is

p(x|θ) ∝
n∏

i=1

θ−1/2 exp

(
−x2

i

2θ

)
= θ−n/2 exp

(
−ns2

2θ

)
,

where we denote σ2 = θ, and the posterior distribution of θ is

p(θ|x) ∝ θ−(α0+1) exp
(
−κ0

θ

)
× θ−n/2 exp

(
−ns2

2θ

)

= θ−(αn+1) exp
(
−κn

θ

)
,

where αn = α0 + n/2 and κn = κ0 + ns2/2. We recognize this as the kernel of
the IG(αn, κn) density function. Notice that the posterior has a relatively simple
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Figure 8.4. Prior density and posterior density for the weight of a beam. The
normal prior (fine line) is so flat that the normal posterior (heavy) is overwhelmingly
influenced by the data, obtained by repeated weighing of the beam on a scale of
relatively high precision. (See Examples 8.3 and 8.7, and Problem 8.11.)
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Figure 8.5. Prior density and posterior density for the precision of hemoglobin
measurements. The gamma prior (fine line) contributes information corresponding
to six measurements. The posterior (heavy) combines this information with data on
42 subjects to give greater precision. (See Examples 8.4 and 8.8.)

form because θ appears in the denominator of the exponential factor of the inverse-
gamma prior. If we had used a gamma prior for the variance θ (instead of the
precision τ = 1/θ), then θ would have appeared in the numerator of the exponential
factor, making the posterior density unwieldy.
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For our data αn = 3 + 42/2 = 24 and κn = 0.75 + 42(0.34)2/2 = 3.178, so
that a 95% posterior probability interval for τ is (4.84, 10.86), computed in R as
qgamma(c(.025, .975), 24, 3.18). The corresponding interval for σ is (0.303, 0.455).
The frequentist 95% confidence interval for σ =

√
θ is based on ns2/θ ∼ CHISQ(n) is

(0.280, 0.432), and can be computed in R as sqrt(42*(.34)^2/qchisq(c(.975,.025), 42)).
The gamma prior and posterior distributions for the precision τ are shown in Fig-
ure 8.5 for τ in the interval (1, 16).

Notes: (1) Because the normal mean is assumed known, µ = 0, we have
ns2/σ2 =

∑
(xi − µ)2/σ2 =

∑
x2

i /σ2 distributed as chi-squared with n
(not n− 1) degrees of freedom. (2) This example is loosely based on a real
situation reported in [HF94] and used as an extended example in Unit 14 of
[Tru02]. In this study, s = 0.34 based on n = 42 subjects. Complications in
practice are that readings from the new device appear to be slightly biased
and that the laboratory determinations, while more precise than those from
the new device, are hardly free of measurement error. Fortunately, in this
clinical setting the precision of both kinds of measurements is much better
than it needs to be. ♦

In the next two chapters we look at Bayesian estimation problems where compu-
tationally intensive methods are required to find posterior distributions. Specifically,
ideas of continuous Markov Chains from Chapter 7 are used to implement Gibbs
Samplers.

8.3 Problems

Problems Related to Examples 8.1 and 8.5 (Binomial Data)

8.1 In a situation similar to Example 8.1, suppose a political consultant chooses
the prior BETA(380, 220) to reflect his assessment of the proportion of the electorate
favoring Proposition B.

a) In terms of a most likely value for π and a 95% probability interval for π,
describe this consultant’s view of the prospects for Proposition B.

b) If a poll of 100 randomly chosen registered voters shows 62% opposed to Propo-
sition B, do you think the consultant (a believer in Bayesian inference) now fears
Proposition B will fail? Quantify your answer with specific information about
the posterior distribution. Recall that in Example 8.5 a poll of 1000 subjects
showed 62% in favor of Proposition A. Contrast that situation with the current
one.

c) Modify the R code of Example 8.5 to make a version of Figure 8.2 (p191) that
describes this problem.

d) Pollsters sometimes report the margin of sampling error for a poll with n sub-
jects as roughly given by the formula 100/

√
n %. According to this formula,

what is the (frequentist’s) margin of error for the poll in part (b)? How do you
suppose the formula is derived?

Hints: (a) Use R code qbeta(c(.025,.975), 380, 220) to find one 95% prior prob-

ability interval. (b) One response: P{π < 0.55} < 1%. (d) A standard formula for an
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interval with roughly 95% confidence is p̂±1.96
√

p̂(1− p̂)/n, where n is “large” and

p̂ is the sample proportion in favor (see Example 1.6). What value of π maximizes

π(1− π)? What if π = 0.4 or 0.6?

8.2 In Example 8.1, we require a prior distribution with E(π) ≈ 0.55 and
P{0.51 < π < 0.59} ≈ 0.95. Here we explore how one might find suitable
parameters α and β for such a beta distributed prior.

a) For a beta distribution, the mean is µ = α/(α + β), and the variance is
σ2 = αβ/[(α+β)2(α+β +1)]. Also, a beta distribution with large enough
values of α and β is roughly normal, so that P{µ− 2σ < π < µ + 2σ} ≈
0.95. Use these facts to find values of α and β that approximately satisfy
the requirements.

b) The following R script finds values of α and β that may come close to
satisfying the requirements, and then checks to see how well they succeed.

alpha = 1:2000 # trial values of alpha

beta = .818*alpha # corresponding values of beta

# Vector of probabilities for interval (.51, .59)

prob = pbeta(.59, alpha, beta) - pbeta(.51, alpha, beta)

prob.err = abs(.95 - prob) # errors for probabilities

# Results: Target parameter values

t.al = alpha[prob.err==min(prob.err)]

t.be = round(.818*t.al)

t.al; t.be

# Checking: Achieved mean and probability

a.mean = t.al/(t.al + t.be)

a.mean

a.prob = pbeta(.59, t.al, t.be) - pbeta(.51, t.al, t.be)

a.prob

What assumptions about α and β are inherent in the script? Why do we
use β = 0.818α? What values of α and β are returned? For the values of
the parameters considered, how close do we get to the desired values of
E(π) and P{0.51 < π < 0.59}?

c) If the desired mean is 0.56 and the desired probability in the interval
(0, 51, 0.59) is 90%, what values of the parameters are returned by a suit-
ably modified script?

8.3 In practice, the beta family of distributions offers a rich variety of
shapes for modeling priors to match expert opinion.

a) Beta densities p(π) are defined on the open unit interval. Observe that
parameter α controls behavior of the density function near 0. In particular,
find the value p(0+) and the slope p′(0+) in each of the following five cases:
α < 1, α = 1, 1 < α < 2, α = 2, and α > 2. Evaluate each limit as being 0,
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positive and finite, ∞, or −∞. (As usual, 0+ means to take the limit as
the argument approaches 0 through positive values.)

b) By symmetry, parameter β controls behavior of the density function
near 1. Thus, combinations of the parameters yield 25 cases, each with its
own “shape” of density. In which of these 25 cases does the density have a
unique mode in (0, 1)? The number of possible inflection points of a beta
density curve is 0, 1, or 2. For each of the 25 cases, give the number of
inflection points.

c) The R script below plots examples of each of the 25 cases, scaled vertically
(with top) to show the properties in parts (a) and (b) about as well as
can be done and yet show most of each curve.

alpha = c(.5, 1, 1.2, 2, 5); beta = alpha

op = par(no.readonly = TRUE) # records existing parameters

par(mfrow=c(5, 5)) # formats 5 x 5 matrix of plots

par(mar=rep(2, 4), pty="m") # sets margins

x = seq(.001, .999, .001)

for (i in 1:5)

{

for (j in 1:5) {

top = .2 + 1.2 * max(dbeta(c(.05, .2, .5, .8, .95),

alpha[j], beta[i]))

plot(x,dbeta(x, alpha[i], beta[j]),

type="l", ylim=c(0, top), xlab="", ylab="",

main=paste("BETA(",alpha[j],",", beta[i],")", sep="")) }

}

par(op) # restores former parameters

Run the code and compare the resulting matrix of plots with your results
above (α-cases are rows, β columns). What symmetries within and among
the 25 plots are lost if we choose beta = c(.7, 1, 1.7, 2, 7)?

8.4 In Example 8.1, we require a prior distribution with E(π) ≈ 0.55 and
P{0.51 < π < 0.59} ≈ 0.95. If we are willing to use nonbeta priors, how might
we find ones that meet these requirements?

a) If we use a normal distribution, what parameters µ and σ would satisfy
the requirements?

b) If we use a density function in the shape of an isosceles triangle, show that
it should have vertices at (0.4985, 0),(0.55, 19.43), and (0.6015, 0).

c) Plot three priors on the same axes: BETA(330, 270) of Example 8.1 and
the results of parts (a) and (b).

d) Do you think the expert would object to any of these priors as an expres-
sion of her feelings about the distribution of π?

Notes: (c) Plot: Your result should be similar to Figure 8.7. Use the method in Exam-

ple 8.5 to put several plots on the same axes. Experiment: If v = c(.51, .55, .59)

and w = c(0, 10, 0), then what does lines(v, w) add to an existing plot? (d) The
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Figure 8.6. Shapes of beta density functions. Shape parameters α and β control
the behavior of the density near 0 and 1, respectively; 25 fundamentally different
shapes are shown here. (See Problem 8.3.)

triangular prior would be agreeable only if she thinks values of π below 0.4985 or

above 0.6015 are absolutely impossible.

8.5 Computational methods are often necessary if we multiply the kernels
of the prior and likelihood and then can’t recognize the result as the kernel
of a known distribution. This can occur, for example, when we don’t use a
conjugate prior. We illustrate several computational methods using the polling
situation of Examples 8.1 and 8.5 where we seek to estimate the parameter π.

To begin, suppose we know the beta prior p(π) (with α = 330 and β =
270) and the binomial likelihood p(x|π) (for x = 620 subjects in favor out
of n = 1000 responding). But we have not been clever enough to notice the
convenient beta form of the posterior p(π|x). We wish to compute the posterior
estimate of centrality E(π|x) and the posterior probability P{π > .6|x} of a
“big margin” in favor of the ballot proposition. From the equation in (8.2), we
have E(π|x) =

∫ 1

0
πp(π)p(x|π) dπ/D and P (π > 0.6|x) =

∫ 1

0.6
p(π)p(x|π) dπ/D,

where the denominator of the posterior is D =
∫ 1

0
p(π)p(x|π) dπ. You should

verify these equations for yourself before going on.
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Figure 8.7. Two nonbeta priors. One (thick lines) has an isosceles triangle as
its density. The other, NORM(.55, .02) (dashed), is hardly distinguishable from
BETA(330, 270) of Example 8.1 (thin). For all three priors P{.51 < π < .59} ≈ 95%.
Only the beta prior is conjugate with binomial data. Bayesian inference using the
nonbeta priors requires special numerical methods. (See Problems 8.4, 8.5 and 8.6.)

a) The following R script uses Riemann approximation to obtain the desired
posterior information. Match key quantities in the program with those in
the equations above. Also, interpret the last two lines of code. Run the
program and compare the results with those obtainable directly from the
known beta posterior of Example 8.5. (In R, pi means 3.1416, so we use
pie for the grid points of parameter π.)

x = 620; n = 1000 # data

m = 10000; pie = seq(0, 1, length=m) # grid points

igd = dbeta(pie, 330, 270) * dbinom(x, n, pie) # integrand

d = mean(igd); d # denominator

# Results

post.mean = mean(pie*igd)/d; post.mean

post.prob.bigwin = (1/m)*sum(igd[pie > .6])/d;

post.prob.bigwin

post.cum = cumsum((igd/d)/m)

min(pie[post.cum > .025])

min(pie[post.cum > .975])

b) Now suppose we choose the prior NORM(0.55, 0.02) to match the expert’s
impression that the prior should be centered at π = 55% and put 95%
of its probability in the interval 51% < π < 59%. The shape of this
distribution is very similar to BETA(330, 270) (see Problem 8.4). However,
the normal prior is not a conjugate prior. Write the kernel of the posterior,
and say why the method of Example 8.5 is intractable. Modify the program
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above to use the normal prior (substituting a dnorm function for the dbeta
function). Run the modified program. Compare the results with those in
part (a).

c) The scripts in parts (a) and (b) above are “wasteful” because grid values of
π are generated throughout (0, 1), but both prior densities are very nearly
0 outside of (0.45, 0.65). Modify the program in part (b) to integrate over
this shorter interval.
Strictly speaking, you need to divide d, post.pi.mean, and so on, by 5
because you are integrating over a region of length 1/5. (Observe the
change in b if you shorten the interval without dividing by 5.) Nevertheless,
show that this correction factor “cancels out” in the main results. Compare
your results with those obtained above.

d) Modify the R script of part (c) to do the computation for a normal
prior by Monte Carlo integration. Increase the number of iterations to
m ≥ 100 000, and use pie = sort(runif(m, .45, .65)). Part of the
program depends on having the π-values sorted in order. Which part?
Why? Compare your results with those obtained by Riemann approxi-
mation. (If this were a multidimensional integration, some sort of Monte
Carlo integration would probably be the method of choice.)

e) (Advanced) Modify part (d) to generate normally distributed values of
pie (with sorted rnorm(m, .55,.02)), removing the dnorm factor from
the integrand. Explain why this works, and compare the results with those
above.
This method is efficient because it concentrates π values in the “impor-
tant” part of (0, 1) where computed quantities are largest. So there would
be no point in restricting the range of integration as in parts (c) and (d).
This is an elementary example of importance sampling.

8.6 Metropolis algorithm. In Section 7.5 we illustrated the Metropolis algo-
rithm as a way to sample from a bivariate normal distribution having a known
density function. In Problem 8.5 we considered some methods of computing
posterior probabilities that arise from nonconjugate prior distributions. Here
we use the Metropolis algorithm in a more serious way than before to sample
from posterior distributions arising from the nonconjugate prior distributions
of Problem 8.4.

a) Use the Metropolis algorithm to sample from the posterior distribution
of π arising from the prior NORM(0.55, 0.02) and a binomial sample of
size n = 1000 with x = 620 respondents in favor. Simulate m = 100 000
observations from the posterior to find a 95% Bayesian probability in-
terval for π. Also, if you did Problem 8.5, find the posterior probability
P{π > 0.6|x}.
The R code below implements this computation using a symmetrical uni-
form jump function, and compares results with those from the very similar
conjugate prior BETA(330, 270). See the top panel in Figure 8.8.
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set.seed(1234)

m = 100000

piec = numeric(m); piec[1] = 0.7 # states of chain

for (i in 2:m) {

piec[i] = piec[i-1] # if no jump

piep = runif(1, piec[i-1]-.05, piec[i-1]+.05) # proposal

nmtr = dnorm(piep, .55, .02)*dbinom(620, 1000, piep)

dmtr = dnorm(piec[i-1], .55, .02)*dbinom(620, 1000, piec[i-1])

r = nmtr/dmtr; acc = (min(r,1) > runif(1)) # accept prop.?

if(acc) {piec[i] = piep} }

pie = piec[(m/2+1):m] # after burn-in

quantile(pie, c(.025,.975)); mean(pie > .6)

qbeta(c(.025,.975), 950, 650); 1-pbeta(.6, 950, 650)

hist(pie, prob=T, col="wheat", main="")

xx = seq(.5, .7, len=1000)

lines(xx, dbeta(xx, 950, 650), lty="dashed", lwd=2)

b) Modify the program of part (a) to find the posterior corresponding to the
“isosceles” prior of Problem 8.2. Make sure your initial value is within
the support of this prior, and use the the following lines of code for the
numerator and denominator of the ratio of densities. Notice that, in this
ratio, the constant of integration cancels, so it is not necessary to know
the height of the triangle. In some more advanced applications of the
Metropolis algorithm, the ability to ignore the constant of integration is
an important advantage. Explain why results here differ considerably from
those in part (a). See the bottom panel in Figure 8.8.

nmtr = max(.0515-abs(piep-.55), 0)*dbinom(620, 1000, piep)

dmtr = max(.0515-abs(piec[i-1]-.55), 0)*

dbinom(620, 1000, piec[i-1])

Note: (b) Even though the isosceles prior may seem superficially similar to the

beta and normal priors, it puts no probability above 0.615, so the posterior

can put no probability there either. In contrast, the data show 620 out of 1000

respondents are in favor.

8.7 A commonly used frequentist principle of estimation provides a point
estimate of a parameter by finding the value of the parameter that maximizes
the likelihood function. The result is called a maximum likelihood esti-
mate (MLE). Here we explore one example of an MLE and its similarity to
a particular Bayesian estimate.

Suppose we observe x = 620 successes in n = 1000 binomial trials and wish
to estimate the probability π of success. The likelihood function is p(x|π) ∝
πx(1− π)n−x taken as a function of π.

a) Find the MLE π̂. A common way to maximize p(x|π) in π is to maximize
`(π) = ln p(x|π). Solve d`(π)/dπ = 0 for π, and verify that you have found
an absolute maximum. State the general formula for π̂ and then its value
for x = 620 and n = 1000.
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Figure 8.8. Posteriors from nonconjugate priors. Data: 620 subjects in favor out
of 1000. Top: The simulated posterior distribution from the prior NORM(.55, .02) is
nearly the same as the posterior BETA(950, 650) (dashed) from the conjugate prior
BETA(330, 270). Bottom: In contrast, support of the posterior from the “isosceles”
prior in Figure 8.7 cannot extend beyond (0.485, 0.615). (See Problem 8.6.)

b) Plot the likelihood function for n = 1000 and x = 620. Approximate its
maximum value from the graph. Then do a numerical maximization with
the R script below. Compare with the answer in part (a).

pie = seq(.001, .999, .001) # avoid ’pi’ (3.1416)

like = dbinom(620, 1000, pie)

plot(like, type="l"); pie[like==max(like)]

c) The interval π̃ ± 1.96
√

π̃(1− π̃)/(n + 4), where π̃ = (x + 2)/(n + 4), has
approximately 95% confidence for estimating π. (This interval is based
on the normal approximation to the binomial; see Example 1.6, p13 and
Problems 1.16 and 1.17.) Evaluate its endpoints for 620 successes in 1000
trials.

d) Now we return to Bayesian estimation. A prior distribution that provides
little, if any, definite information about the parameter to be estimated is
called a noninformative prior. A commonly used noninformative beta
prior has α0 = β0 = 1, which is the same as UNIF(0, 1). For this prior and
data consisting of x successes in n trials, find the posterior distribution
and its mode.

e) For the particular case with n = 1000 and x = 620, find the posterior
mode and a 95% probability interval.

Note: In many estimation problems, the MLE is in close numerical agreement with

the Bayesian point estimate based on a noninformative prior and on the posterior

mode. Also, a confidence interval based on the MLE may be numerically similar
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to a Bayesian probability interval from a noninformative prior. But the underlying

philosophies of frequentists and Bayesians differ, and so the ways they interpret

results in practice may also differ.

Problems Related to Examples 8.2 and 8.6 (Poisson data)

8.8 In a situation similar to that Examples 8.2 and 8.6, suppose that we
want to begin with a prior distribution on the parameter λ that has E(λ) ≈ 8
and P{λ < 12} ≈ 0.95. Subsequently, we count a total of t = 158 mice in
n = 12 trappings.

a) To find the parameters of a gamma prior that satisfy the above require-
ments, write a program analogous to the one in Problem 8.2. (You can
come very close with α0 an integer, but don’t restrict κ0 to integer values.)

b) Find the gamma posterior that results from the prior in part (a) and the
data given above. Find the posterior mean and a 95% posterior probability
interval for λ.

c) As in Figure 8.3(a), plot the prior and the posterior. Why is the posterior
here less concentrated than the one in Figure 8.3(a)?

d) The ultimate noninformative gamma prior is the improper one with α0 =
κ0 = 0 (see Problems 8.7 and 8.11 for definitions). Using this prior and
the data above, find the posterior mean and a 95% posterior probability
interval for λ. Compare with the interval in part (c)?

Partial answers: In (a) you can use a prior with α0 = 13. Our posterior intervals

in (c) and (d) agree when rounded to integer endpoints: (11, 15). But not when

expressed to one or two-place accuracy—as you should do.

8.9 In this chapter we have computed 95% posterior probability intervals by
finding values that cut off 2.5% from each tail. This method is computationally
relatively simple and gives satisfactory intervals for most purposes. However,
for skewed posterior densities, it does not give the shortest interval with 95%
probability.

The following R script finds the shortest interval for a gamma posterior.
(The vectors p.low and p.up show endpoints of enough 95% intervals that
we can come very close to finding the one for which the length, long, is a
minimum.)

alp = 5; kap = 1

p.lo = seq(.001,.05, .00001)

p.up = .95 + p.lo

q.lo = qgamma(p.lo, alp, kap)

q.up = qgamma(p.up, alp, kap)

long = q.up - q.lo # avoid confusion with function ‘length’

c(q.lo[long==min(long)], q.up[long==min(long)])

a) Compare the length of the shortest interval with that of the usual
(probability-symmetric) interval. What probability does the shortest in-
terval put in each tail?
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b) Use the same method to find the shortest 95% posterior probability inter-
val in Example 8.6. Compare it with the probability interval given there.
Repeat, using suitably modified code, for 99% intervals.

c) Suppose a posterior density function has a single mode and decreases
monotonically as the distance away from the mode increases (for example,
a gamma density with α > 1). Then the shortest 95% posterior probability
interval is also the 95% probability interval corresponding to the highest
values of the posterior: a highest posterior density interval. Explain
why this is true. For the 95% intervals in parts (a) and (b), verify that the
heights of the posterior density curve are indeed the same at each end of
the interval (as far as allowed by the spacing 0.00001 of the probability
values used in the script).

8.10 Mark-recapture estimation of population size. In order to estimate the
number ν of fish in a lake, investigators capture r of these fish at random,
tag them, and then release them. Later (leaving time for mixing, but not for
significant population change), they capture s fish at random from the lake
and observe the number x of tagged fish among them.

Suppose r = 900, s = 1100, and we observe x = 103. [This is similar to the
situation described in Problem 4.27 (p112), partially reprised here in parts (a)
and (b).]

a) Method of moments estimate (MME). At recapture, an unbiased estimate
of the true proportion r/ν of tagged fish in the lake is x/s. That is,
E(x/s) = r/ν. To find the MME of ν, equate the observed value x/s to its
expectation and solve for ν. (It is customary to truncate to an integer.)

b) Maximum likelihood estimate (MLE). For known r, s, and ν, the hyper-
geometric probability distribution function pr,s(x|ν) = (r

x)(ν−r
s−x)/(ν

s ) gives
the probability of observing x tagged fish at recapture. Once x is observed
pr,s(x|ν), considered as a function of ν, is the likelihood function. Find
the MLE; that is, the value of ν that maximizes pr,s(x|ν).

c) Bayesian interval estimate. Suppose we believe ν lies in (6000, 14000) and
are willing to take the prior distribution of ν as uniform on this interval.
Use the R code below to find the cumulative posterior distribution of ν|x
and thence a 95% Bayesian interval estimate of ν. Explain the code.

r = 900; s = 1100; x = 103

nu = 6000:14000; n = length(nu)

prior = rep(1/n, n)

like = dhyper(x, r, nu-r, s)

denom = sum(prior*like)

post = prior*like/denom; cumpost = cumsum(post)

c(min(nu[cumpost >= .025]), max(nu[cumpost <= .975]))

d) Use the negative binomial prior: prior = dnbinom(nu-150, 150, .014).
Compare the resulting Bayesian interval with that of part (c) and with a
bootstrap confidence interval obtained as in Problem 4.27.
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Problems Related to Examples 8.3 and 8.7 (Normal data, σ known)

8.11 In Example 8.7 we show formulas for the mean and precision of the
posterior distribution. Suppose five measurements of the weight of the beam,
using a scale known to have precision τ = 1, are: 698.54, 698.45, 696.09,
697.14, 698.62 (x̄ = 697.76).

a) Based on these data and the prior distribution of Example 8.3, what is
the posterior mean of µ? Does it matter whether we choose the mean, the
median, or the mode of the posterior distribution as our point estimate?
(Explain.) Find a 95% posterior probability interval for µ. Also, suppose
we are unwilling to use this beam if it weighs more than 699 pounds; what
are the chances of that?

b) Modify the R script shown in Example 8.5 to plot the prior and posterior
densities on the same axes. (Your result should be similar to Figure 8.4.)

c) Taking a frequentist point of view, use the five observations given above
and the known variance of measurements produced by our scale to give
a 95% confidence interval for the true weight of the beam. Compare with
the results of part (a) and comment.

d) The prior distribution in this example is very “flat” compared with the
posterior: its precision is small. A practically noninformative normal prior
is one with precision τ0 that is much smaller than the precision of the
data. As τ0 decreases, the effect of µ0 diminishes. Specifically,

lim
τ0→0

µn = x̄ and lim
τ0→0

τn = nτ.

The effect is as if we had used p(µ) ∝ 1 as the prior. Of course, such a
prior distribution is not strictly possible because

∫∞
−∞p(µ) dµ would be ∞.

However, it is convenient to use such an improper prior as shorthand
for understanding what happens to a posterior as the prior gets less and
less informative. What posterior mean and 95% probability interval result
from using an improper prior with our data? Compare with the results of
part (c).

e) Now change the example: Suppose that our vendor supplies us with a more
consistent product so that the prior NORM(701, 5) is realistic and that our
data above come from a scale with known precision τ = 0.4 Repeat parts
(a) and (b) for this situation.

8.12 The purpose of this problem is to derive the posterior distribution
p(µ|x) resulting from the prior NORM(µ0, σ0) and n independent observations
xi ∼ NORM(µ, σ). (See Example 8.7.)

a) Show that the likelihood is

f(x|µ) ∝
n∏

i=1

exp
[
− 1

2σ2
(xi − µ)2

]
∝ exp

[
−

n∑

i=1

1
2σ2

(x̄− µ)2
]

.
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To obtain the first expression above, recall that the likelihood function
is the joint density function of x = (x1, . . . , xn)|µ. To obtain the second,
write (xi−µ)2 = [(xi− x̄)+ (x̄−µ)]2, expand the square, and sum over i.
On distributing the sum, you should obtain three terms. One of them
provides the desired result, another is 0, and the third is irrelevant because
it does not contain the variable µ. (A constant term in the exponential is
a constant factor of the likelihood, which is not included in the kernel.)

b) To derive the expression for the kernel of the posterior, multiply the kernels
of the prior and the likelihood, and expand the squares in each. Then put
everything in the exponential over a common denominator, and collect
terms in µ2 and µ. Terms in the exponent that do not involve µ are
constant factors of the posterior density that may be adjusted as required
in completing the square to obtain the desired posterior kernel.

Problems Related to Examples 8.3 and 8.7 (Normal data, µ = 0)

8.13 For a pending American football game, the “point spread” is estab-
lished by experts as a measure of the difference in the ability of the two teams.
The point spread is often of interest to gamblers. Roughly speaking, the fa-
vored team is thought to be just as likely to win by more than the point
spread as to win by less or to lose. So ideally a fair bet that the favored team
“beats the spread” could be made at even odds. Here we are interested in the
difference x = v − w between the point spread v, which might be viewed as
the favored team’s predicted lead, and the actual point difference w (favored
team’s score minus opponent’s) when the game is played.

a) Suppose an amateur gambler, perhaps interested in bets that would not
have even odds, is interested in the precision of x and is willing to assume
x ∼ NORM(0, σ). Also, recalling relatively few instances with |x| > 30, he
decides to use a prior distribution on σ that satisfies P{10 < σ < 20} =
P{100 < σ2 = 1/τ < 400} = P{1/400 < τ < 1/100} = 0.95. Find param-
eters α0 and κ0 for a gamma-distributed prior on τ that approximately
satisfy this condition. (Use a program similar to the one in Problem 8.2.)

b) Suppose data for point spreads and scores of 146 professional football
games show s = (

∑
x2

i /n)1/2 = 13.3. Under the prior distribution of
part (a), what 95% posterior probability intervals for τ and σ result from
these data?

c) Use the noninformative improper prior distribution with α0 = κ0 = 0 and
the data of part (b) to find 95% posterior probability intervals for τ and σ.
Also, use these data to find the frequentist 95% confidence interval for σ
based on the distribution CHISQ(146), and compare it with the posterior
probability interval for σ.

Notes and hints: (a) Parameters α0 = 11, κ0 = 2500 give probability 0.945 and

might be used for part (b), but a properly written program will give integers that

come closer to 95%. (b) The data x in part (b), taken from more extensive data
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available online [Ste92], are for 1992 NFL home games; x̄ ≈ 0 and the data pass

standard tests for normality. For a more detailed discussion and analysis of point

spreads see [Ste91]. (c) The two intervals for σ agree closely, roughly (12, 15). You

should report results to one decimal place.

8.14 We want to know the precision of an analytic device. We believe its
readings to be normally distributed and unbiased. We have five standard spec-
imens of known value to use in testing the device, so we can observe the
error xi that the device makes for each specimen. Thus we assume that the xi

are independent NORM(0, σ), and we wish to estimate σ = 1/
√

τ .

a) We use information from the manufacturer of the device to determine
a gamma-distributed prior for τ . This information is provided in terms
of σ. Specifically, we want the prior to be consistent with a median of
about 0.65 for σ and with P{σ < 1} ≈ 0.95. If a gamma prior distribution
on τ has parameter α0 = 5, then what value of the parameter κ0 comes
close to meeting these requirements?

b) The following five errors are observed when analyzing test specimens:
−2.65, 0.52, 1.82,−1.41, 1.13. Based on the prior distribution in part (a)
and these data, find the posterior distribution, the posterior median value
of τ , and a 95% posterior probability interval for τ . Use these to give the
posterior median value of σ and a 95% posterior probability interval for σ.

c) On the same axes, make plots of the prior and posterior distributions of τ .
Comment.

d) Taking a frequentist approach, find the maximum likelihood estimate
(MLE) τ̂ of τ based on the data given in part (b). Also, find 95% confidence
intervals for σ2, σ, and τ . Use the fact that

∑n
i=1 x2

i /σ2 ∼ CHISQ(n) =
GAMMA(n/2, 1/2). Compare these with the Bayesian results in part (b).

Notes: The invariance principle of MLEs states that τ̂ = 1/σ̂2 = 1/σ̂2, where “hats”

indicate MLEs of the respective parameters. Also, the median of a random variable

is invariant under any monotone transformation. Thus, for the prior or posterior

distribution of τ (always positive), Med(τ) = 1/Med(σ2) = 1/[Med(σ)]2. But, in

general, expectation is invariant only under linear transformations. For example,

E(τ) 6= 1/E(σ2) and E(σ2) 6= [E(σ)]2.


