
10

Introduction to Bayesian Analysis using
WinBUGS

In this chapter we introduce the software package WinBUGS for implementing
the use of the Gibbs Sampler to estimate parameters in Bayesian Models. The
BUGS software uses Markov Chain Monte Carlo methods to simulate random
values from the posterior distributions of the parameters in the model being
estimated.

There are two main versions of BUGS for Microsoft Windows. One is
the WinBUGS program that can be downloaded from the original WinBUGS
website

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

see the WinBUGS link on the left

http://www.mrc-bsu.cam.ac.ukbugs/winbugs/contents.shtml

The WinBUGS project is now being further developed as OpenBUGS.
The current version of OpenBUGS can be downloaded from the OpenBUGS
website. The current and future development plans for WinBUGS are discuss
on the Software webpage.

http://mathstat.helsinki.fi/openbugs

In this Chapter we use of OpenBUGS 3.0.3 to show some examples of the
use of Gibbs Sampling. We also demonstrate the use of BRugs, the R library
for running BUGS programs from within R.

In this chapter we refer to WinBUGS as the software packages since when
OpenBUGS is installed the software is still entitled WinBUGS.

10.1 What is BUGS?

The BUGS program is designed for Bayesian modeling. The term BUGS
stands for Bayesian Inference Using Gibbs Sampling. At the core of the soft-
ware program is the Gibbs Sampler which is used to sample from the condi-
tional posterior distributions of the parameters, calculated by the program,

242 10 Introduction to Bayesian Analysis using WinBUGS

from a listing of the model and the prior distributions. The posterior analysis
is performed using the simulated Monte Carlo Markov Chain output produced
by the program. Posterior statistics and posterior densities can be calculated
to produce posterior estimates of the parameters in the model. Trace plots,
mean plots, and autocorrelation plots can be made to examine the convergence
of the Markov Chain simulations.

BUGS also uses other algorithms to simulate from the conditional poste-
rior distributions. The Metropolis-Hastings Algorithm and Adaptive Rejection
methods are also implemented when necessary.

A WinBUGS program is written in code that uses some of the same con-
ventions as R. The program includes a statement of the model, after the word
model with a semicolon after it, with the model following in curly braces.
The data used in the model is specified using a list, as defined in R. And
finally there is a list of initial values, or inits. Examples of the code will be
given in the Chapter.

The Warning from the creators of WinBUGS:
Potential users are reminded to be extremely careful if using this program

for serious statistical analysis. We have tested the program on quite a wide set
of examples, but be particularly careful with types of model that are currently
not featured. If there is a problem, WinBUGS might just crash, which is not
very good, but it might well carry on and produce answers that are wrong,
which is even worse. Please let us know of any successes or failures.

Beware: MCMC sampling can be dangerous!

10.2 Election Poll Example in WinBUGS

In Chapter 8 the Election polling Example 8.1 is the first model we will fit
using WinBUGS. Recall the model used for the number of voters in favor
of Proposition A, x, was the BINOM(n, p) with a BETA(α, β) prior on the
parameter p. The prior was determined to have parameters α0 = 330 and β0 =
270, which centered the prior at 55% with high probability that the parameter
p would be between 51% and 59%. The data used in the Example 8.5 was
x = 620 yes votes out of n = 1000 voters sampled. Because this model and
prior are conjugate the posterior distribution can be derived, so WinBUGS
implements Monte Carlo simulation directly from the posterior and does not
implement the Gibbs Sampler. For this example we give the steps necessary
to run the model in WinBUGS directly. We use only 2000 interations for this
first example so we can see the simulated history plots more clearly. Longer
runs of the program would produce more accurate results and would match
the exact answers from Chapter 8 to at least 2 decimal places.

The following program is opened in WinBUGS. Note that there are three
parts to the program, the Model and two lists, one for the Data and one for
the initial values or Inits.

10.2 Election Poll Example in WinBUGS 243

Figure 10.1. Polling Example WinBUGS screenshot

Model

model;

{

X ~ dbin(p,n)

p ~ dbeta(330,270) # prior mode = 0.55, 95% prior interval (0.51, 0.59)

}

Data

list(X = 620, n = 1000) # observed data

Inits

list(p = 0.25) # starting values for p

To run the program we begin by opening the Specification Tool, from
the Model pull down menu, see Figure 10.1 for the view of the the software
program and the pull down menus and see Figure 10.2 for the view of the
Specification Tool.

To specify the model, highlight the word model;, under # Model and
then click the check model button in the Specification Tool. The response
in the lower left corner should be “model is syntactically correct.” To load
the data, highlight the word list under # Data, and then click the load
data button in the Specification Tool. The response in the lower left corner
should be “data loaded.” To compile the model, click the compile button in
the Specification Tool. The response in the lower left corner should be “model
compiled.” To load the initial values, highlight the word list under # Inits,

244 10 Introduction to Bayesian Analysis using WinBUGS

Figure 10.2. Polling Example Specification Tool

Figure 10.3. Polling Example Update Tool

and then click the load inits button in the Specification Tool. The response
in the lower left corner should be “model is initialized.”

Next we open the Update Tool from the Model pull down menu, see Fig-
ure 10.3, and the Sample Monitor Tool from the Inference pull down menu,
see Figure 10.4. The WinBUGS program should look like Figure 10.1.

Once the Sample Monitor Tool is open, we can enter the “node” in the
model. Since there is one model parameter, we need to enter one node. In the
Sample Monitor Tool type the node p and click the set button. To save the
sampled values and analyze the values, enter the star symbol in the node box,
*. You should see all of the button appear.

Now we update the model 2000 iterations. In the Update Tool click the
update button twice. To view the sampled values, in the Sample Monitor
Tool, click the history button. To view the sampled values of p, estimated
parameter, the estimated posterior density, and the ACF of the simulated

10.2 Election Poll Example in WinBUGS 245

Figure 10.4. Polling Example Sample Monitor Tool

values, in the Sample Monitor Tool, click the history, stats, density, and
auto cor buttons. The WinBUGS program should look like Figure 10.5.

The results from WinBUGS are close to the computed values from Chap-
ter 8 the Election polling Example 8.6. The posterior mean is 59.39% in favor
of Proposition A. And the posterior probability interval for the proportion in
favor is (56.9%, 61.79%). These results are very close to the exact values com-
puted earlier, 59.4% and (57.0%, 61.8%). With a longer run of the WinBUGS
program we could come closer to the actual values, but with 2000 values we
come very close.

The summary results from the simulated values from the posterior distri-
bution of p are as follows:

mean sd MC_error val2.5pc median val97.5pc start sample

p 0.5939 0.01222 2.389E-4 0.569 0.5939 0.6179 1 2000

Note that we could have used a burn-in period by changing the starting
value, beg from 1 to 1001 in the Sample Monitor Tool. The summary results
would change to:

mean sd MC_error val2.5pc median val97.5pc start sample

p 0.5935 0.01221 3.51E-4 0.5684 0.5935 0.6178 1001 1000

246 10 Introduction to Bayesian Analysis using WinBUGS

Figure 10.5. Polling Example WinBUGS screenshot

10.3 Reaction Time Example, Pooled Two Sample T-test

One way to study how the human brain performs various tasks is to measure
the lengths of time required to complete the tasks. If one task takes longer
than another, then the brain must be going through more steps or more
complicated steps to process the task that takes longer.

As part of one experiment in a series, a researcher tested 48 students.
Each subject was given three nonsense words to memorize: one, two, and three
syllables long, and beginning with three different letters of the alphabet. For
example, one subject might be given the words ga, duco, and tekabi. As is
often the case in a controlled experiment of this kind, the 48 subjects were
divided at random into two groups of 24 each.

“Choice” group. Subjects in the first group were seated in front of a
computer screen and taught to respond to the following sequence: A message
appears on the screen to announce the beginning of a trial, Get Ready. Then
a random length of time later a letter appears on the screen, corresponding
to one of the three nonsense words. For example, G is the signal for ga. The
subject is supposed to say the appropriate word aloud as soon as possible
after this letter cue appears. Then another one of the subjects three words is
selected for the next trial and the process is repeated, and so on.

The time from when the letter cue appears to when the subject begins to
say the word, called the reaction time, is measured in milliseconds. After a
number of practice trials for the subject to become familiar with the proce-
dure, 90 trials are measured, including 30 for each word with a random order

10.3 Reaction Time Example, Pooled Two Sample T-test 247

of presentation. Simple group. The 24 subjects in the second group were asked
to learn a slight variation of the procedure just described. For these subjects,
the message that starts each trial reveals the first letter of the nonsense word
randomly selected for that trial. For example, Get ready for G is the message
for the word ga. Then a random length of time later a star appears as the
signal to say the word as soon as possible. Except for the difference in the
way the cues are given, both groups are treated exactly the same.

Comparison. In the measured length of time, subjects in the Simple
group only have to say a word they have already had time to recall while
waiting for the star to appear. The time measured for the Choice group in-
cludes both recalling the correct word out of three and saying it. Does the
additional mental activity of choosing which word to say take a detectable
amount of extra time? If so, how much? In statistical language, we assume
that the two groups are samples from theoretical populations of humans per-
forming the Choice and Simple tasks. We wonder whether the mean reaction
times of these two populations are different.

The data. The dataset REACTIME contains summarized reaction times
in milliseconds (msec) for 24 subjects in the Simple group and for 24 subjects
in the Choice group. Results are presented in two separate columns.

c1 Choice Summarized reaction times (in msec) of 24 subjects, letter cue
given at end

c2 Simple Summarized reaction times (in msec) of 24 subjects, letter cue
given to start

Additional columns in this dataset are introduced in Section 4. Recall
that the 48 subjects in this experiment were randomized into the Simple and
Choice groups. In particular, the first subject listed in c1 is different from the
first in c2.

... end of quote from Trumbo.

The Reaction Time data can be analyzed using a comparison of two normal
models. In Classical Statistics a Pooled Independent Two Sample T-test could
be performed. Here we develop a Bayesian model for the two groups assuming
normal data for each group and assuming a common variance for both groups
(Choice x1 ∼ N(µ1, τ) and Simple x2 ∼ N(µ2, τ), where σ2 = 1/τ). The

248 10 Introduction to Bayesian Analysis using WinBUGS

Figure 10.6. ReactionTime Example WinBUGS screenshot

model assumes flat conjugate normal priors for the means µ1 and µ2 and
assumes a flat conjugate gamma prior for the precision τ . And two other model
parameters are defined, σ = 1/

√
τ , the standard deviation, and δ = µ1 − µ2,

the difference between the two means.
The following program is opened in WinBUGS, see Figure 10.6. Note that

the code for the Normal distribution is in terms of the mean µ and the precision
τ .

Model

model;

{

for(i in 1 : n1) {

Choice_x1[i] ~ dnorm(mu1,tau)

}

for(j in 1 : n2) {

Simple_x2[j] ~ dnorm(mu2,tau)

}

mu1 ~ dnorm(0.0,1.0E-6)

mu2 ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.01,0.001)

sigma <- 1/sqrt(tau)

delta <- mu1-mu2

}

10.3 Reaction Time Example, Pooled Two Sample T-test 249

We begin by opening the Specification Tool. From the Model pull-down
menu select Specification. To specify the model, highlight the word model;
under # Model and then click the check model button in the Specification
Tool. To load the data, highlight the word list under # Data, and then
click the load data button in the Specification Tool. To compile the model,
click the compile button in the Specification Tool. To load the initial values,
highlight the word list under # Inits, and then click the load inits button
in the Specification Tool. The response in the lower right corner should be
“model is initialized.”

Next we open the Update Tool. From the Model pull-down menu select
Update. We also open the Sample Monitor Tool. From the Inference pull-down
menu select Samples. Once the Sample Monitor Tool is open, we can enter
the nodes in the model. Since there are five model parameters, we need to
enter five nodes.

1. Type mu1, click set.
2. Type mu2, click set.
3. Type tau, click set.
4. Type sigma, click set.
5. Type delta, click set.

To save all the simulated values of the model nodes, enter a ∗ in the node
box. All of the buttons on the Sample Monitor Tool should appear.

Now update the model 2000 iterations for a burn-in period. In the Update
Tool click the update button twice. Now select the trace button in the
Sample Monitor Tool to watch the sample values as they are simulated. Run
the simulation 2000 more iterations by clicking the update button in the
Update Tool two more times, to produce the simulated values to analyze
as sampled values from the posterior distributions. Note that in the Dynamic
trace window the simulated values are automatically updated, see Figure 10.7.

To view the sampled values, in the Sample Monitor Tool, click the history
button. To see the posterior analysis after burn-in, change the beg value to
2001, and click the stats and density buttons, see Figure 10.8. The results
are:

mean sd MC_error val2.5pc median val97.5pc start sample

delta 168.9 13.76 0.2404 141.3 169.3 197.0 2001 2000

mu1 470.4 9.69 0.2021 451.7 470.6 489.4 2001 2000

mu2 301.6 10.01 0.2161 281.5 301.8 321.0 2001

2000

sigma 48.54 5.168 0.1007 39.5 48.09 59.62 2001

2000

tau 4.387E-4 9.195E-51.75E-6 2.826E-4 4.325E-4 6.413E-4

2001 2000

There is a clear difference in reachtion time for the Simple group. To see
this we can examine the model parameter δ = µ1 − µ2 which is estimated

250 10 Introduction to Bayesian Analysis using WinBUGS

Figure 10.7. ReactionTime Example Dynamic Trace

to have a posterior mean of 168.8 with a posterior 95% interval of (141.1,
196.7). Indicating that there is a 95% chance that the difference µ1 − µ2 is
in the interval, and note that the interval does not include 0, this indicates
that there is a significant difference between the two group means. The Simple
group has a reaction time that is 168.8 less that the Choice group.

There is another way to run the WinBUGS program, it is through writing
a script. Here is an example of the script needed to run the model for the
Reaction Time data.

modelCheck(’C:/ReactionTime/ReactionTimeModel.odc’)

modelData(’C:/ReactionTime/ReactionTimeData.odc’)

modelCompile(1)

modelInits(’C:/ReactionTimeInit.odc’)

modelUpdate(1000)

samplesSet(mu1)

samplesSet(mu2)

samplesSet(tau)

samplesSet(sigma)

samplesSet(delta)

modelUpdate(1000)

samplesStats(’*’)

samplesDensity(’*’)

samplesHistory(’*’)

samplesAutoC(’*’)

10.4 Die Data Example, One-way random effects ANOVA 251

Figure 10.8. ReactionTime Example Node statistics and Posterior density

Three files need to be created, a model file, a data file, and an initial values
file. The files contain the three part of the Reaction Time WinBUGS program
from above.

To run the script, open the Log to see the running of the Script. From the
Info pull-down menu select Open Log. Then click on the window in WinBUGS
containing the Script, from the Model pull-down menu select Script. The
model should run. In Log you should see the calls of each command in the
script and windows should appear with the history and other results, see
Figure 10.9.

10.4 Die Data Example, One-way random effects
ANOVA

Compare the results here with Exercise 9.20.

Model

model;

{

for(i in 1 : batches) {

mu[i] ~ dnorm(theta, tau.btw)

for(j in 1 : samples) {

y[i , j] ~ dnorm(mu[i], tau.with)

252 10 Introduction to Bayesian Analysis using WinBUGS

Figure 10.9. ReactionTime Example Script

}

}

theta ~ dnorm(0.0, 1.0E-10)

prior for within-variation

sigma2.with <- 1/tau.with

tau.with ~ dgamma(0.001, 0.001)

sigma.with <- sqrt(sigma2.with)

sigma.btw <- sqrt(sigma2.btw)

Prior for ICC

ICC ~ dunif(0,1)

sigma2.btw <- sigma2.with *ICC/(1-ICC)

tau.btw <- 1/sigma2.btw

}

Data

list(batches = 30, samples = 5,

y = structure(.Data = c(959, 976, 1015, 1003, 971,

977, 990, 972, 977, 1004,

987, 988, 1008, 973, 963,

974, 1004, 995, 991, 977,

1011, 1009, 984, 1033, 1014,

1058, 1063, 1057, 1062, 1072,

972, 965, 968, 973, 974,

1028, 1047, 1044, 1039, 1047,

973, 1007, 998, 1030, 1001,

1042, 991, 1016, 1014, 1018,

10.5 Old Faithful Data, Linear Regression 253

1013, 989, 1016, 992, 1010,

991, 1001, 1024, 977, 999,

978, 939, 960, 990, 990,

1026, 1032, 1017, 1018, 998,

1030, 1024, 1054, 1046, 1061,

1038, 1024, 1005, 990, 1018,

1020, 997, 1019, 1008, 1016,

1039, 1024, 1053, 1038, 1019,

1023, 1009, 1037, 993, 1007,

1006, 994, 1002, 1011, 1007,

993, 1003, 979, 990, 983,

1011, 975, 988, 1017, 999,

982, 1006, 1003, 975, 991,

970, 935, 951, 960, 972,

1008, 987, 977, 981, 1004,

994, 980, 1016, 1023, 1009,

971, 969, 973, 964, 951,

1070, 1050, 1041, 1055, 1047,

985, 995, 998, 995, 989,

1000, 987, 979, 1013, 1008),

.Dim = c(30, 5)))

Inits

list(theta=1500, tau.with=1,ICC=0.5)

10.5 Old Faithful Data, Linear Regression

Plot the fitted Bayesian estimated line and show the idea of a prediction
interval for a new value. Also, it is reasonable to show this a a BRugs program
in R.

Note there is serial correlation in the sampled values. See Figure 6.2

Model

model;

{

for(i in 1 : N) {

mu[i] <- alpha + beta * (x[i] - xbar)

}

for(i in 1 : N) {

Y[i] ~ dnorm(mu[i],tau)

}

alpha ~ dnorm(0.0,1.0E-6)

beta ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.001,0.001)

254 10 Introduction to Bayesian Analysis using WinBUGS

sigma <- sqrt(1 / tau)

}

Data WaitNext = alpha + beta DurLast

list(x = c(4.4, 3.9, 4.0, 4.0, 3.5, 4.1, 2.3, 4.7, 1.7, 4.9,

1.7, 4.6, 3.4, 4.3, 1.7, 3.9, 3.7, 3.1, 4.0, 1.8,

4.1, 1.8, 3.2, 1.9, 4.6, 2.0, 4.5, 3.9, 4.3, 2.3,

3.8, 1.9, 4.6, 1.8, 4.7, 1.8, 4.6, 1.9, 3.5, 4.0,

3.7, 3.7, 4.3, 3.6, 3.8, 3.8, 3.8, 2.5, 4.5, 4.1,

3.7, 3.8, 3.4, 4.0, 2.3, 4.4, 4.1, 4.3, 3.3, 2.0,

4.3, 2.9, 4.6, 1.9, 3.6, 3.7, 3.7, 1.8, 4.6, 3.5,

4.0, 3.7, 1.7, 4.6, 1.7, 4.0, 1.8, 4.4, 1.9, 4.6,

2.9, 3.5, 2.0, 4.3, 1.8, 4.1, 1.8, 4.7, 4.2, 3.9,

4.3, 1.8, 4.5, 2.0, 4.2, 4.4, 4.1, 4.1, 4.0, 4.1,

2.7, 4.6, 1.9, 4.5, 2.0, 4.8, 4.1),

Y = c(78, 74, 68, 76, 80, 84, 50, 93, 55, 76,

58, 74, 75, 80, 56, 80, 69, 57, 90, 42,

91, 51, 79, 53, 82, 51, 76, 82, 84, 53,

86, 51, 85, 45, 88, 51, 80, 49, 82, 75,

73, 67, 68, 86, 72, 75, 75, 66, 84, 70,

79, 60, 86, 71, 67, 81, 76, 83, 76, 55,

73, 56, 83, 57, 71, 72, 77, 55, 75, 73,

70, 83, 50, 95, 51, 82, 54, 83, 51, 80,

78, 81, 53, 89, 44, 78, 61, 73, 75, 73,

76, 55, 86, 48, 77, 73, 70, 88, 75, 83,

61, 78, 61, 81, 51, 80, 79), xbar = 3.461, N = 107)

Inits

list(alpha = 0, beta = 0, tau = 1)

10.6 Problems

1. For the Election polling example, run the program for 10,000 iterations
and see if the posterior estimate of p and the posterior 95% probability
interval is closer to the values computed earlier in Chapter 8.

2. Suppose only 100 people were polled in the Election polling example pre-
sented at the beginning of this Chapter. And suppose the same proportion
of voters in favor of Proposition A responded in favor. So there were x = 62
yes votes out of the n = 100 voters polled.
a) Modify the program given at the beginning of this Chapter to reflect

the change in the data. Run the program and report the estimated
posterior proportion of voters in favor of Proposition A.

b) Because of the reduction in the amount of data collected, is there an
increase in the influence of the prior on the posterior?

