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Here the test statistic is equal for the unseparated pairs of 
n 1. Since none of these orderings is identical, the p values 
are not generally equal. Note that the orderings for T4 and 
T6 differ only in the position of the table, with nlI = 0. 

4. REMARKS 

Another group of test statistics for testing independence 
is derivable from R2 by dividing by an estimate of standard 
error other than the usual pooled estimate. If the unpooled 
estimate 

SI = {nIIn2I/n3+I + nl2n22/n3+2}l'2 

is used, P(R21S1) $ P(R2). Dozzi and Riedwyl (1984) sug- 
gested that 

S2= {(nlln2l/n+l + nl2n22/n+2) 

x (n4- + n-I)/(N - 2)}1/2 

so that R2/S2 is the one-sided t statistic for testing the equality 
of two means. It follows from results in Dozzi and Riedwyl 
(1984) that P(R21S3) = P(R2). Similar comments are ap- 
plicable to T2, R3, and T3. 

Finally, all of the test statistics proposed in the literature 
for testing independence of two dichotomous factors have 
not been discussed here. For example, see Dozzi and Ried- 
wyl (1984), Garside and Mack (1976), and Upton (1982) 
for discussion of other tests. 
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Prediction Limits for a Univariate Normal Observation 
G. A. WHITMORE* 

Basic statistics textbooks invariably introduce the topic of 
prediction in the context of simple regression for the bi- 
variate normal model. It seems more appropriate, however, 
to introduce the topic in conjunction with univariate normal 
inference. Prediction limits for the univariate case build on 
elementary theory that is familiar to the student. This ap- 
proach provides an easier transition to prediction in the 
regression framework and exposes the student at an earlier 
stage to important applications and ideas connected with 
prediction. Adoption of the approach may give prediction 
the more prominent position in basic statistical education 
that it deserves. 

KEY WORDS: Applications; Statistical education. 

1. INTRODUCTION 

An extensive survey of basic statistics textbooks shows 
that the topic of prediction limits, if covered at all, is first 

introduced in the context of simple regression for the bi- 
variate normal model [see, for example, Neter, Wasserman, 
and Whitmore (1982) and Newbold (1984)]. In this setting, 
the 1 - a prediction limits for a new independent obser- 
vation of Y at level X are given by 

Y ? tl-aJ2,n-2 (MSE)112[1 + (1/n) 

+ (X - X)21(n - 1)sx]112, (1.1) 

where Y is the fitted regression value at X, MSE is the mean 
squared error of the fitted regression model, n is the sample 
size, X and s2 are the mean and variance of the sample Xi 
values, and tl-a/2,n-2 is the 1 - a/2 fractile of a t distri- 
bution with n - 2 df. 

The theoretical derivation of the regression prediction 
limits in (1.1) is often neither readily grasped by students 
nor seen by them to follow from more elementary results 
presented earlier in their course. To provide a smoother 
transition to the prediction limits in the regression case and 
as a useful prediction method in its own right, it seems more 
desirable to introduce prediction limits in the context of 
inference methods for a univariate normal population. 

*G. A. Whitmore is Professor, McGill University, 1001 Sherbrooke 
Street West, Montreal, Canada H3A lG5. 
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Concern about the omission of elementary predictive in- 
ference in basic statistical education was expressed years 
ago by Hahn (1969) who stated that 

. . . we note with surprise the extent to which the concept of a prediction 
interval, which is frequently what is required in practical applications, has 
been omitted in texts on elementary statistics, which provide very extensive 
coverage of confidence intervals for the mean, and, sometimes of tolerance 
intervals. As a result, the construction of a prediction interval is unfamiliar 
to almost all non-statistical users of statistics who frequently confuse it 
with the other two types of intervals. The only introductory textbook 
coverage of the concept seems to be with regard to regression models for 
the special case of a single future observation. . . (p. 886) 

From this author's experience, an elementary discussion 
of prediction limits fits well in a basic course immediately 
following the discussion of a confidence interval for the 
mean of a normal population. Students view the topic as a 
natural and straightforward extension of the subject of nor- 
mal inference. Class time taken up by the topic is saved 
subsequently in the easier introduction of prediction in a 
regression context, which is made possible by the earlier 
presentation of the univariate case. 

2. DEVELOPMENT OF THE 
PREDICTION LIMITS 

The theory for predictive inference in the normal popu- 
lation case is fully developed in the literature (e.g., Hahn 
1969, 1970) and also is covered extensively in a few stan- 
dard reference textbooks (e.g., Cox and Hinkley 1974, pp. 
242-245, and Nelson 1982, pp. 224-225). The requisite 
formulas for prediction limits for a single observation from 
a normal population are easily derived, as follows. 

Let Y represent an observation drawn from the normal 
distribution N(Q, cr2) for which a prediction interval is re- 
quired. If A and C- are known, then 

/ ? Zl-a120 (2.1) 

are 1 - a prediction limits for Y, where ZI - a/2 iS the 
1 - a12 fractile of the standard normal distribution. This 
result will be apparent to the student. The quality control 
application described in Section 3 provides a setting in which 
knowledge of the parameters is a realistic claim. 

Now proceed to the more common case in which both A 
and 0 are unknown. Let Yi, i = 1, . . ., n, be a random 
sample from N(A, o2), which has been drawn indepen- 
dently of Y, the observation to be predicted. Denote the 
sample mean and standard deviation by Y and s, respec- 
tively. Y may be used as a point predictor of Y, and 
Y - Y will be the prediction error. Students must be familiar 
with the following results to understand the theoretical der- 
ivation. 

1. Y is an unbiased predictor in the sense that 
E{Y - Y} = 0. 

2. The variance of Y - Y is 0-2{y_ y} = 0-2 + 

(t2In). It is revealing to point out to the student that the 
first variance term reflects the variation of Y about ,u and 
the second variance term reflects the variation contributed 
because Y is used as an estimate of ,u. 

3. Y - Y is normally distributed because Y and Y are 
independent normal random variables. This fact and the two 

previous ones imply, therefore, that Y - Y is distributed 
as N(0, 0.2(1 + 1 /n)). 

4. Y - Y and s2 are independent random variables. 
5. (n - 1)s2/U2 is distributed as X2 

The preceding facts, taken together, give the key distri- 
butional result 

(Y - Y) s[I +1] = tn-l. (2.2) 

The desired 1 - a prediction limits are, therefore, 

y t1-a2,n-1S L + 1] (2.3) 

Should it happen that either A or 0. is known, then the 
limits in (2.3) become modified, as follows: 

tl - ? ta/2, n-(s if A is known (2.4) 

and 

Y ? Ziai20.[I + -1 if 0. is known. (2.5) 
[nj 

The student should be informed that the relative frequency 
interpretation of the confidence level 1 - a for the pre- 
diction limits in (2.3) is one based on repeated drawings of 
both the original sample Yi, i = 1, . . ., n, and the predicted 
observation Y (Cox and Hinkley 1974, p. 244). It is also 
important for the student to note that the preceding predic- 
tion intervals do not share the robustness property of the 
t-based confidence interval for a population mean. Any de- 
parture of the population from normality has a direct effect 
on the confidence level associated with these prediction 
limits (Hahn 1969, p. 886). 

3. APPLICATIONS AND EXTENSIONS 

Many practical applications of the prediction limits sug- 
gest themselves. One might surmise that the omission of 
these prediction limits in basic statistics textbooks is one 
reason why applications have not come to the fore. Their 
inclusion in the standard presentation of univariate normal 
inference would help to give predictive inference a more 
prominent place in applied statistics. 

Nelson (1982, p. 225), for example, illustrated the ap- 
plication of prediction limits (2.3) to predicting the log-life 
of an electric-motor insulation specimen from experimental 
data. In quality control, prediction limits (2.1) may be used 
as control limits for an attribute of a production item for 
which the process parameters are specified to be ,u and 0. 

or as performance limits in quality assurance claims (Hahn 
1969, pp. 880-881). Finally, forecasting the next obser- 
vation in an independent and stationary normal process is 
a natural application of prediction limits (2.3). For instance, 
a city government may wish to predict total snow accu- 
mulation during the next winter from a historical record of 
annual accumulations to decide on the quantity of road salt 
to purchase (Dudewicz 1976, p. 339). 

In presenting the prediction limits in a course, instructors 
may wish to extend the technical development along the 
lines of some of the following comments. 
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1. The prediction limits can be used in conjunction with 
a normalizing transformation, as illustrated by the logarith- 
mic transformation in the preceding example from Nelson 
(1982). Transformations to achieve approximate normality 
are especially important in light of the lack of robustness 
of the prediction limits noted earlier. 

2. Some instructors may wish to contrast prediction lim- 
its with tolerance limits; the former refers to limits for a 
single independent observation from a normal population, 
and the latter refers to limits within which a certain fraction 
of the entire normal population is claimed to lie. 

3. The prediction limits (2.3) can be extended readily to 
include the case of predicting the mean of m new obser- 
vations in an independent random sample from the same 
normal population. In this case the 1 - a limits for the 
predicted mean have the form 

Y ? tl-a/2,n-IS5[ + !]1/.(3.1) 

In addition, prediction limits of the form Y ? rs can be 
constructed that will contain all m new observations with a 
given level of confidence. Tables of the multiplier r may 
be found in Hahn (1969, 1970). 

4. The instructor may wish to note that result (2.2) holds 
approximately for the standardized sample values 

Zi = (Yi - Y)Is, i = 1,.. .,n, (3.2) 

and this fact may be useful for outlier identification in nor- 

mal samples. The class discussion of (3.2) provides a useful 
preparation for the subsequent discussion of standardized 
residuals in a regression framework. 

5. For courses with a Bayesian orientation, the limits in 
(2.3) are the central 1 - a posterior probability limits for 
a prediction of Y based on a normal sample Y1, . . ., Yn and 
an uninformative improper prior joint density function for 
A and o- (e.g., see DeGroot 1970, chap. 10). 

[Received April 1985. Revised September 1985.] 
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Relationships Among Common Univariate Distributions 
LAWRENCE M. LEEMIS* 

Common univariate distributions are usually discussed sep- 
arately in introductory probability textbooks, which makes 
it difficult for students to understand the relationships among 
these distributions. The purpose of this article is to present 
a figure that illustrates some of these relationships. 

KEY WORDS: Limiting distributions; Transformations of 
random variables. 

1. INTRODUCTION 

Students in a first course in probability usually study 
common univariate distributions. Most introductory text- 
books discuss each of the distributions in separate sections. 
One of the drawbacks of this approach is that students often 
do not grasp all of the interrelationships among the distri- 

butions. The purpose of this article is to present and discuss 
a figure that overcomes this shortfall. 

There are several excellent sources for studying univariate 
distributions. Hastings and Peacock's (1975) handbook shows 
graphs of densities and variate relationships for several dis- 
tributions. Hirano, Kuboki, Aki, and Kuribayashi (1983) 
gave graphs of univariate distributions for many combina- 
tions of parameter values. For more detail, Johnson and 
Kotz (1970) have done a four-volume series covering uni- 
variate and multivariate distributions. Recently, Patil, Bos- 
well, Joshi, and Ratnaparkhi (1985) and Patil, Boswell, and 
Ratnaparkhi (1985) have also completed volumes on dis- 
crete and continuous distributions. Other books on distri- 
butions and modeling include Ord (1972), Patel, Kapadia, 
and Owen (1976), and Shapiro and Gross (1981). Diagrams 
that relate these distributions to one another may be found 
in Nakagawa and Yoda (1977), Taha (1982), and Marshall 
and Olkin (1985). 

2. DISCUSSION 

The diagram in Figure 1 shows some relationships among 
common univariate distributions that might be presented in 

*Lawrence M. Leemis is Assistant Professor, School of Industrial En- 
gineering, University of Oklahoma, 202 West Boyd, Room 124, Norman, 
OK 73019. The author expresses gratitude to Bruce Schmeiser for his 
helpful advice on the diagram, and to the referees and editor for their 
careful reading and helpful suggestions. 
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