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‘Bernard FLURY and Alice ZOPPE

Suppose survival times follow an exponential distribution,
and some observations are right-censored: in this situation
the EM algorithm gives a straightforward solution to the
problem of maximum likelihood estimation. But what hap-
pens if survival times are also left-censored, or if they fol-
low a uniform distribution? The EM algorithm is a generic
device useful in a variety of problems with incomplete data,
and it appears more and more often in statistical textbooks.
This article presents two exercises, which are extensions of
a well-known example used in introductions to the EM al-
gorithm. They focus on two points: the applicability of the
algorithm and its self-consistency property.

KEY WORDS: EM-algorithm; Exponential distribution;
Incomplete data; Maximum likelihood estimation; Uniform
distribution.

1. INTRODUCTION

The EM algorithm (Dempster, Laird, and Rubin 1977,
McLachlan and Krishnan 1997) is a powerful tool for com-
puting maximum likelihood estimates with incomplete data.
“Incomplete” is a generic word that, according to the sit-

uation, can assume different meanings: missing values, un- -

known components, censored observations, latent variables,
and so on. Its appearance in modern textbooks gives the
teacher of medium to advanced level statistics courses ex-
cellent opportunities to challenge students with exercises.
Two such exercises are described in this note.

A brief (and incomplete) description of the EM algorithm
follows.

Let ) denote the observed data and X' the unknown data,
6 the parameter of interest and £.(0; Y, X) the (hypotheti-
cal) complete-data log-likelihood, defined for all 6 in a pa-
rameter space §). Starting with an initial parameter value
9 e Q, the EM algorithm repeats the following two steps
until convergence.

e E-step: compute £0)(0) = Euyygu-u[le(8; Y, X)),
where the expectation is taken with respect to the condi-
tional distribution of the missing data X given the observed
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data ), and the current numerical value §U~1 is used in
evaluating the expected value.
e M-step : find #) € Q that maximizes £0)(6).

Iterating for j = 1,2,... between the two steps leads to
a sequence A1) 9 . that converges to a local maximum
of the observed-data log-likelihood, if it exists, under fairly
general conditions (for details see Wu 1983).

Prominent applications of the EM algorithm include
missing values situations, search of the mode of posterior
distribution in Bayesian framework (Tanner 1996), appli-
cations to grouped, censored, or truncated data, and finite
mixture models; see Dempster et al. (1977) or McLachlan
and Krishnan (1997).

2. THE FIRST EXERCISE

Generalizing one of the standard examples of censored
data, suppose that the lifetime of litebulbs follows an ex-
ponential distribution with unknown mean #. A total of
M + N litebulbs are tested in two independent experiments.
In the first experiment, with N bulbs, the exact lifetimes
y1,-..,yn are recorded. In the second experiment, the ex-
perimenter enters the laboratory at some time ¢ > 0, and all
she registers is that some of the M litebulbs are still burn-
ing, while the others have expired. Thus, the results from
the second experiment are right- or left-censored, and the
available data are indicators F1,..., Ey;, where E; = 1 if
the bulb is still burning, and E; = 0 if the light is out.

Having this data, which is the MLE §?

Let X1, ..., X be the (unobserved) lifetimes associated
with the second experiment, and Z = Zf\il E; the number
of litebulbs in the second experiment that are still alive at
time ¢. Thus, the observed data from both the experiments
combined is

Y= (}/1,)/2)'-~)YN)E1aE2)'-‘,E]\/[),
and the unobserved data is
X=(Xy,...,Xn)

The complete-data log-likelihood is

M
0e(0;9,X) = —N(logf + Y /6) = > (log§ + X,/6), (1)

=1
which is linear in the unobserved X;. But

if E;=1 )
if Ei=0,()

te "t/

BLY) = BpxE] = { e

and therefore the jth step consists of replacing X in (1) by
its expected value (2), using the current numerical parame-
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ter value #U~1), The result is
, 1 4
£9)(0) = —(N 4+ M) log 8 — gINY + Z(t + gU—1))y
+H(M = Z)(8971 —pi=1)], (3)

where
—t/0(@)
o —
1 e—t/Q(])
The jth M-step maximizes (3), yielding
0 = (oYY

N+M
)

Thus, one can simply iterate Equation (4), starting with an
arbitrary positive #(%), until convergence.

The self-consistency equation § = f(#) has no explicit
solution unless Z = M, (i.e., all litebulbs in experiment 2
are still on at time ¢); in this case, we obtain the well-known
solution § = (NY + Mt)/N.

This exercise may also be tackled directly without using
the EM algorithm. The joint log-likelihood of both experi-
ments, using observed data only, is

£(0) = —N(log 6 + Y /)
—Zt/0 + (M — Z)log(1 —e~¥?). (5)

The log-likelihood (5) can then be maximized with stan-
dard numerical methods. If Z = M, the self-consistency
equation and the maximum of the (5) can be solved analyt-
ically, and in this case ML and EM give the same answer
(McLachlan and Krishnan 1997, p. 24).

3. THE SECOND EXERCISE

Contrary to litebulbs, lifetimes of heavybulbs follow a
uniform distribution in the interval (0, 6], where 6 > 0 is
unknown. Suppose the same experiments are performed as
in the first exercise, and again the second experimenter reg-
isters only that Z out of M heavybulbs are still burning at
time ¢, while M — Z have expired.

Using again the EM algorithm, the solution to the prob-
lem of maximum likelihood estimation is fairly straight-
forward. We know that for (hypothetical) complete data,
the MLE would be max{Xmax, Ymax}» Where Y.y is the
largest of the observed lifetimes, and X, is the largest of
the unobserved lifetimes.

Assume for simplicity that Z > 1, so that we are sure
that 8 > t. Then

st+0) if E=1
E[X;|E| =
st if Ei=0,
and the EM algorithm consists simply of iterations of the
equation:

09 = £(09) = max{Vina, %(t +0U7)) 0

208 Teacher’s Corner

NY + Z(t+0U=D) + (M — Z) (0U=1) — tpli=b)

Starting with any #(®) > 0, iterations for j = 1,2,... will
converge to the solution 0 = max{Ymax,t}, and this con-
clusion may be obtained easily by noticing that the self-
consistency equation 6 = f(6) is solved by 6.

The main advantage of this solution is its simplicity. Its
main disadvantage is that it is wrong. Why it is wrong we
will explain later, after sketching a correct solution.

The joint likelihood function of both experiments is

L(0) = 0Ny, 00 (0)

y (m)’“ (- m) ™

Consider first the case Z = 0. Then

¢ M
L(O) = O_NI[Ymamoo)(e) (Inax—(fe)) s

which is decreasing for § > Yinax, and therefore the maxi-
mum likelihood estimator is 6 = Yiax.

Next consider the case Z > 1, which implies § > ¢.
For § > t, the function H(§) = §~N+M)(9 — ¢)Z has a

unique maximum in 8 = <~EY_ ¢ and is monotonicall
NtM—-Z

decreasing for § > 6. Thus, the likelihood function (7) takes
its maximum at 6 if § > YViax, and at Yiax if 6 < Yinax.

Summarizing these results we obtain the maximum like-
lihood estimate as

6= 6 if 9'>Ymax and Z >1
Yoinax otherwise.

Why is the solution given by the EM algorithm wrong?
The answer is simple: the EM algorithm is not applicable
because the log-likelihood function does not exist for all
6 > 0, which means that its expected value is not defined.
To see this, assume that one heavybulb has survived time ¢,
and let X,,, be its (unobserved) lifetime. The unconditional
pdf of X is :

1/6 if 0<z,<6@
ms 0) = —om =
fx(@ ) { 0 elsewhere.

In the jth E-step we need to find K(j)(ﬁ) = Exjyg6-v
[£.(6; X,Y]. Conditionally on X,,|Y,,, which means con-
ditionally on X, > t, and using #U~1) as the parameter,
X, follows a uniform distribution in [t,#U~")]. Now, for
all @ < 0U=1, f(z,,;0) takes value zero with positive prob-
ability, and hence £)(6) does not exist for § < #U—1). This
could be seen from Equation (7), but in the rush of applying
the EM algorithm, it is easy to skip this check.

4. CONCLUSIONS

This note originated in exercises given to students in
graduate level mathematical statistics courses, following an
introduction to the EM algorithm. The first exercise empha-
sizes the fact that the self-consistency property cannot be
derived for every situation, opposite to what the students
might think. Even the best students failed to solve the sec-
ond exercise correctly, falling into the well-prepared trap



(provided by the first exercise) of simply replacing unob-
served data by their conditional expectation. The lesson to
be learned is this: it can not be stressed enough that the
E-step does not simply involve replacing missing data by
their conditional expectation (although this is true for many
important applications of the algorithm). Rather, the E-step
takes the expected value of the complete-data log-likelihood
function, conditional on the observed data. If the likelihood
function takes value zero in a subset of the parameter space,
then the log-likelihood function does not exist, and the EM
algorithm is not applicable.

[Received April 1999. Revised October 1999.]
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