
4. The following data were collected on the number of aluminum cans damaged during
shipping on a semitruck and the distance shipped, in hundreds of miles.

Distance (xj) 4 3 5 8 4 3 3 4 3 5 7 3 8
Cans (Yj) 27 54 86 136 65 109 28 75 53 33 168 47 52

Let Y1, Y2, ..., Yn denote independent Poisson random variables, such that Yj has mean
λj > 0, where Yj = the number of cans damaged during shipment j. Consider
modeling the relationship between the mean number of damaged cans, λj, and the
distance of the shipment, xj, as

log(λj) = α + βxj

where x1, ..., xn are assumed to be known constants and α and β are unknown pa-
rameters.

(a) Sketch a picture of Y versus x on a scatterplot. Comment on the underlying
relationship between Y and x. On the scatterplot, sketch what you think µY |x =
E[Y |x] is in terms of prediction.

(b) Explain why a log transformation should make the conditional mean more linear.

(c) Determine the likelihood function, L(λ) = L(λ1, ..., λn).

(d) Determine the log-likelihood function l(λ) = l(λ1, ..., λn).

(e) Substitute log(λj) = α + βxj into the log-likelihood function to determine the
log-likelihood function l(α, β).

(f) Determine the 2 non-linear functions that need to be solved numerically to
determine the maximum likelihood estimates (MLEs) of α and β.

(g) Use the R code given on the next page (and provided on the exam website in
the file cans.R) to determine the values of the MLEs.

(h) Conduct a generalized likelihood ratio test for H0 : β = 0 versus H1 : β 6= 0.



# Check to see if these libraries are installed in R.
# If not, run the next two lines of code to install them or use the
# pull-down menu Packages > Install package(s)... .

library(ismev)
library(stats4)

# install.packages("ismev", repos = "http://cran.cnr.Berkeley.edu")
# install.packages("stats4", repos = "http://cran.cnr.Berkeley.edu")

x = c(4, 3, 5, 8, 4, 3, 3, 4, 3, 5, 7, 3, 8)
Y = c(27, 54, 86, 136, 65, 109, 28, 75, 53, 33, 168, 47, 52)

n = length(Y); n

X11(); plot(x, Y)

Y.log = log(Y)

X11(); plot(x,Y.log)

# minus the log likelihood

ll = function(a,b){
-sum(Y*(a + b*x)) + sum(exp(a + b*x)) + sum(log(factorial(Y)))

}

model.mle = mle(minuslog=ll,start=list(a=1,b=1)); model.mle

# plot fitted model

a.mle = coef(model.mle)[1]; a.mle
b.mle = coef(model.mle)[2]; b.mle

x.index = seq(min(x), max(x),0.01)
Y.fit = exp(a.mle + b.mle*x.index)

plot(x,Y,xlab="speed",ylab="damaged cans",main="Fitted Model")
lines(x.index,Y.fit,type="l",col=3)

a.0 = log(mean(Y)); a.0

LR.stat = 2*n*(a.mle - a.0)*mean(Y) + 2*b.mle*sum(x*Y)
LR.stat

qchisq(.95,1)



4. (a) The plot seems to have an increasing trend, that is curved upward, and it shows
heteroskedasticity.

There seems to be an outlier at (3, 109).

So the best predictor µY |x should be curved upward.
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(b) A log transformation should help to improve the linearity of the plot log(Yj)
versus xj.
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(c) Let Yj ∼ Poisson(λj), where λj > 0 and j = 1, ..., n.

f(yj) = λ
yj

j

e−λj

yj!

So

L(λ) = L(λ1, ..., λn)

=
n∏

j=1

f(yj)

=
n∏

j=1

λ
yj

j

e−λj

yj!

(d)

l(λ) = l(λ1, ..., λn)

=
n∑

j=1

yj log(λj)−
n∑

j=1

λj −
n∑

j=1

log(yj!)

(e)

l(α, β) =
n∑

j=1

yj(α + βxj)−
n∑

j=1

exp(α + βxj)−
n∑

j=1

log(yj!)

(f) Taking partial derivatives with respect to α and β and setting each equation
equal to zero, yields the following two equations.

n∑
j=1

exp(α + βxj) =
n∑

j=1

yj

n∑
j=1

xj exp(α + βxj) =
n∑

j=1

xjyj



(g) Using the mle() function in, provided in the R code, α̂ = 3.546 and β̂ = 0.149.

> # minus the log likelihood

>

> ll = function(a,b){

+ -sum(Y*(a + b*x)) + sum(exp(a + b*x)) + sum(log(factorial(Y)))

+ }

> model.mle = mle(minuslog=ll,start=list(a=1,b=1))

> model.mle

Call:

mle(minuslogl = ll, start = list(a = 1, b = 1))

Coefficients:

a b

3.5464014 0.1489722

The plot of the fitted model.
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(h) Test H0 : β = 0 versus H1 : β 6= 0.

The GLR in general

Λ =
maxΩ0 L(θ)

maxΩ L(θ)

here



Λ =
maxα0 L(α0)

maxα,β L(α, β)

=
L(α̂0)

L(α̂, β̂)

Under the null hypothesis, α̂0 = log(ȳ) = 4.27. Under the alternative hypothesis
the MLEs were computed above, α̂ = 3.546 and β̂ = .149.

The LR statistic is

−2 log(Λ) = 2n(α̂− α̂0)ȳ + 2β̂
∑

xjyj

and from the R output, the computed value of the LR statistics is 78.22.

> LR.stat = 2*n*(a.mle - a.0)*mean(Y) + 2*b.mle*sum(x*Y)

> LR.stat

78.21663

Recall that the LR statistic −2 log(Λ) has a Chi-Square distribution, here with
degrees of freedom equal to 1. So to conduct the hypothesis test we need the
critical value from this distribution with a significance level α = 0.05.

> qchisq(.95,1)

[1] 3.841459

Reject H0 at the 5% significance level, because the likelihood ratio statistics
(78.22) is greater than the Chisquare, df = 1, critical value (3.84).

There is evidence that the number of damaged can’s is related to the speed of
the semitruck.
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