4. The following data were collected on the number of aluminum cans damaged during shipping on a semitruck and the distance shipped, in hundreds of miles.

Distance $\left(x_{j}\right)$	4	3	5	8	4	3	3	4	3	5	7	3	8
Cans $\left(Y_{j}\right)$	27	54	86	136	65	109	28	75	53	33	168	47	52

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote independent Poisson random variables, such that Y_{j} has mean $\lambda_{j}>0$, where $Y_{j}=$ the number of cans damaged during shipment j. Consider modeling the relationship between the mean number of damaged cans, λ_{j}, and the distance of the shipment, x_{j}, as

$$
\log \left(\lambda_{j}\right)=\alpha+\beta x_{j}
$$

where x_{1}, \ldots, x_{n} are assumed to be known constants and α and β are unknown parameters.
(a) Sketch a picture of Y versus x on a scatterplot. Comment on the underlying relationship between Y and x. On the scatterplot, sketch what you think $\mu_{Y \mid x}=$ $E[Y \mid x]$ is in terms of prediction.
(b) Explain why a log transformation should make the conditional mean more linear.
(c) Determine the likelihood function, $L(\boldsymbol{\lambda})=L\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
(d) Determine the log-likelihood function $l(\boldsymbol{\lambda})=l\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
(e) Substitute $\log \left(\lambda_{j}\right)=\alpha+\beta x_{j}$ into the \log-likelihood function to determine the log-likelihood function $l(\alpha, \beta)$.
(f) Determine the 2 non-linear functions that need to be solved numerically to determine the maximum likelihood estimates (MLEs) of α and β.
(g) Use the R code given on the next page (and provided on the exam website in the file cans. R) to determine the values of the MLEs.
(h) Conduct a generalized likelihood ratio test for $H_{0}: \beta=0$ versus $H_{1}: \beta \neq 0$.

```
# Check to see if these libraries are installed in R.
# If not, run the next two lines of code to install them or use the
# pull-down menu Packages > Install package(s)... .
library(ismev)
library(stats4)
# install.packages("ismev", repos = "http://cran.cnr.Berkeley.edu")
# install.packages("stats4", repos = "http://cran.cnr.Berkeley.edu")
x = c(4, 3, 5, 8, 4, 3, 3, 4, 3, 5, 7, 3, 8)
Y = c(27, 54, 86, 136, 65, 109, 28, 75, 53, 33, 168, 47, 52)
n = length(Y); n
X11(); plot(x, Y)
Y.log = log(Y)
X11(); plot(x,Y.log)
# minus the log likelihood
ll = function(a,b){
    -sum(Y*(a + b*x)) + sum(exp(a + b*x)) + sum(log(factorial(Y)))
}
model.mle = mle(minuslog=ll,start=list(a=1,b=1)); model.mle
# plot fitted model
a.mle = coef(model.mle)[1]; a.mle
b.mle = coef(model.mle) [2]; b.mle
x.index = seq(min(x), max(x),0.01)
Y.fit = exp(a.mle + b.mle*x.index)
plot(x,Y,xlab="speed",ylab="damaged cans",main="Fitted Model")
lines(x.index,Y.fit,type="l",col=3)
a.0 = log(mean(Y)); a.0
LR.stat = 2*n*(a.mle - a.0)*mean(Y) + 2*b.mle*sum(x*Y)
LR.stat
qchisq(.95,1)
```

4. (a) The plot seems to have an increasing trend, that is curved upward, and it shows heteroskedasticity.
There seems to be an outlier at $(3,109)$.
So the best predictor $\mu_{Y \mid x}$ should be curved upward.

(b) A \log transformation should help to improve the linearity of the plot $\log \left(Y_{j}\right)$ versus x_{j}.

(c) Let $Y_{j} \sim \operatorname{Poisson}\left(\lambda_{j}\right)$, where $\lambda_{j}>0$ and $j=1, \ldots, n$.

$$
f\left(y_{j}\right)=\lambda_{j}^{y_{j}} \frac{e^{-\lambda_{j}}}{y_{j}!}
$$

So

$$
\begin{aligned}
L(\boldsymbol{\lambda}) & =L\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& =\prod_{j=1}^{n} f\left(y_{j}\right) \\
& =\prod_{j=1}^{n} \lambda_{j}^{y_{j}} \frac{e^{-\lambda_{j}}}{y_{j}!}
\end{aligned}
$$

(d)

$$
\begin{aligned}
l(\boldsymbol{\lambda}) & =l\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& =\sum_{j=1}^{n} y_{j} \log \left(\lambda_{j}\right)-\sum_{j=1}^{n} \lambda_{j}-\sum_{j=1}^{n} \log \left(y_{j}!\right)
\end{aligned}
$$

(e)

$$
l(\alpha, \beta)=\sum_{j=1}^{n} y_{j}\left(\alpha+\beta x_{j}\right)-\sum_{j=1}^{n} \exp \left(\alpha+\beta x_{j}\right)-\sum_{j=1}^{n} \log \left(y_{j}!\right)
$$

(f) Taking partial derivatives with respect to α and β and setting each equation equal to zero, yields the following two equations.

$$
\begin{aligned}
\sum_{j=1}^{n} \exp \left(\alpha+\beta x_{j}\right) & =\sum_{j=1}^{n} y_{j} \\
\sum_{j=1}^{n} x_{j} \exp \left(\alpha+\beta x_{j}\right) & =\sum_{j=1}^{n} x_{j} y_{j}
\end{aligned}
$$

(g) Using the mle() function in, provided in the R code, $\hat{\alpha}=3.546$ and $\hat{\beta}=0.149$.

```
> # minus the log likelihood
>
> ll = function(a,b){
+ -sum(Y*(a + b*x)) + sum(exp(a + b*x)) + sum(log(factorial(Y)))
+ }
> model.mle = mle(minuslog=ll,start=list(a=1,b=1))
> model.mle
Call:
mle(minuslogl = ll, start = list(a = 1, b = 1))
Coefficients:
\begin{tabular}{rr} 
a & b \\
3.5464014 & 0.1489722
\end{tabular}
```

The plot of the fitted model.

(h) Test $H_{0}: \beta=0$ versus $H_{1}: \beta \neq 0$.

The GLR in general

$$
\Lambda=\frac{\max _{\Omega_{0}} L(\theta)}{\max _{\Omega} L(\theta)}
$$

here

$$
\begin{aligned}
\Lambda & =\frac{\max _{\alpha_{0}} L\left(\alpha_{0}\right)}{\max _{\alpha, \beta} L(\alpha, \beta)} \\
& =\frac{L\left(\hat{\alpha}_{0}\right)}{L(\hat{\alpha}, \hat{\beta})}
\end{aligned}
$$

Under the null hypothesis, $\hat{\alpha}_{0}=\log (\bar{y})=4.27$. Under the alternative hypothesis the MLEs were computed above, $\hat{\alpha}=3.546$ and $\hat{\beta}=.149$.
The LR statistic is

$$
-2 \log (\Lambda)=2 n\left(\hat{\alpha}-\hat{\alpha}_{0}\right) \bar{y}+2 \hat{\beta} \sum x_{j} y_{j}
$$

and from the R output, the computed value of the LR statistics is 78.22 .

```
> LR.stat = 2*n*(a.mle - a.0)*mean(Y) + 2*b.mle*sum(x*Y)
> LR.stat
```

78.21663

Recall that the LR statistic $-2 \log (\Lambda)$ has a Chi-Square distribution, here with degrees of freedom equal to 1 . So to conduct the hypothesis test we need the critical value from this distribution with a significance level $\alpha=0.05$.

```
> qchisq(.95,1)
```

[1] 3.841459
Reject H_{0} at the 5% significance level, because the likelihood ratio statistics (78.22) is greater than the Chisquare, $\mathrm{df}=1$, critical value (3.84).

There is evidence that the number of damaged can's is related to the speed of the semitruck.

