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Introduction to R

R is not a typical statistical analysis system. It is a flexible computer language that facilitates statistical
computations. The distinct advantage of R is that the user is free to create new data-analysis schemes out of
the built in components to S-plus. Furthermore, R programs can be developed in an interactive environment.
Another valuable aspect of R is its ability to create excellent graphical displays.

The R command line prompt is:

To exit R:

> qQO

To get help in R:

> help(q)

The comment symbol is:
> # comment

Values can be stored in R as single values, in vectors, and in matrices. For example,

gives the value 5 to x, or

>x =¢(1,5,7,8,9,10)

gives x a vector of 6 values, or

> x = matrix(x, 2, 3)

makes a matrix. Elements of a matrix can be accessed by
> x[1,2]

A nice way to save commands you might want to save for later execution is in a script file (*.SSC). You can
type your commands into a script file and the cut-and-paste them into the command window or run them
by hitting the F10 key. Type the following commands into a script file and run them.

c(5,4,8,12,10,20,25,27,14,80)

z + 5
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.new = z[z>10]
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.new
length(z)

length(z.new) /length(z)
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Some useful statistics commands are:

z.mean = mean(z)

Z.mean

z.var = var(z)

z.var

z.sd = sqrt(z.var)

z.sd

z.median = median(z)
z.median

z.q.50 = quantile(z,0.50)
z.q.50

R functions for many common statistical distributions are available.
function that calculates c.d.f. values, a q function that calculates quantiles, a d function that calculates
heights of the density curve, and a r function that calculates random values from the given distribution.

For each distribution there is a p
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# Plotting density functions.

# Plot the density function of the beta distribution for different values of

# betal and beta2.
x = (1:99)/100

betal 1

beta2 =1

p-beta = dbeta(x,betal,beta2)
plot(x,p.beta,main="beta densities",type="1")

par (new=T)
betal = 5
beta2 =1

p-beta = dbeta(x,betal,beta2)
plot(x,p.beta,main="beta densities",pch="+")

par (new=T)
betal = 1
beta2 = 5
p-beta = dbeta(x,betal,beta2)

plot(x,p.beta,main="beta densities",pch="x*")

par (new=T)
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betal = 10

beta2 = 10

p-beta = dbeta(x,betal,beta2)
plot(x,p.beta,main="beta densities",pch="-")

# Take a random sample from a beta.

betal = 5
beta2 =1
n = 1000

rbeta(n,betal,beta2)

y

hist(y,main="histogram of a random sample from a beta
distribution",xlim=c(0,1))
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All commands, variables, functions, and all responses to R commands are recorded by R. To see what has
been created

> 1s0)
To remove an object such as z, type
> rm(z)

Simulation is a way to approximate real-world processes. The key to simulation techniques is a sequence of
random numbers. Some examples of simulation follow.
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### Simulate flipping a fair coin.

# There are two possible outcomes. Let x be the number of heads in n flips of a fair coin.

n = 500

X sample(0:1,n,replace=T)
p-hat = cumsum(x)

index 1:n

p-hat = p.hat/index

plot(p.hat,main="relative frequency of heads",type="1",ylim=c(0,1))

p-hat[n]
1/2

p.obs
p.exp

cbind(p.obs,p.exp)
### Simulate rolling a fair die.

# There are six possible outcomes. Let x be the number of pips you see on each roll of a
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# fair die.

10000
sample(1:6,n,replace=T)

n

X
br <- (1:7)-0.5

par (mfcol=c(4,1))

hist(x[1:100] ,nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
hist(x[1:500] ,nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
hist(x[1:1000] ,nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
hist(x[1:10000] ,nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")

p-obs = table(x)/n
p-exp = numeric(6)
p-exp = c(1,1,1,1,1,1)/6

cbind(p.obs,p.exp)
### Simulate rolling a pair of fair dice.

# There are 12 possible outcomes. Let x be the sum of pips you see on each roll of the
# pair of fair dice.

10000
= matrix(sample(1:6,2*n,replace=T),2,n)
apply(x,2,sum)

n H B
nmonon

br = (1:13)-0.5

par (mfcol=c(4,1))

hist(s[1:100] ,nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice")

hist(s[1:500] ,nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice")

hist(s[1:1000] ,nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice")
hist(s[1:10000] ,nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice"

p-obs = table(s)/n
p.exp = numeric(12)
p-exp = ¢(1,2,3,4,5,6,5,4,3,2,1)/36

cbind(p.obs,p.exp)
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Just to exhibit a variance stabilizing transformation, consider a sample from the Poisson distribution.
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### Variance Stabilizing Transformation

# Suppose X is a Poisson random variable.
# Consider a sample of n Poisson random variables.

n = 10000

lambda = 0.4

#lambda = 1
#lambda = 5
#lambda = 10

x = rpois(n,lambda)
x.max = max(x)
br = (0:(x.max+1))-0.5

hist(x,nclass=(x.max+1) ,breaks=br,probability=T,main="relative frequency plot")

b

.samplemean = mean(x)
.samplevar = var(x)

b

Xx.ev = lambda
X.var = lambda

cbind(x.samplemean,x.ev,x.samplevar,x.var)
y = sqrt(x)

y.samplemean = mean(y)
y.samplevar = var(y)

cbind(y.samplemean,y.samplevar)
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To see the CLT in action consider the following examples:
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### Central Limit Theorem

# Take samples from a normal population. Plot a histogram of the sampling distribution
# of x.bar.

m = 50
sd = 10

par (mfrow=c(2,2))
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x = (0:100)

p-norm = dnorm(x,m,sd)
plot(x,p.norm,main="normal density",type="1",xlim=c(0,100))

x = matrix(rnorm(3000,m,sd) ,nrow=30)
x.bar = apply(x,2,mean)

hist(x.bar,main="sampling distribution of x.bar",xlim=c(40,60))

plot(density(x.bar,width=5) ,main="sampling distribution of
x.bar",type="1",x1im=c(0,100))

# Take samples from a beta population. Plot a histogram of the sampling distribution
# of x.bar.

betal =
beta?2

1
= ol

par (mfrow=c(2,2))
x = (1:99)/100

p-beta = dbeta(x,betal,beta2)
plot(x,p.beta,main="beta density",type="1")

x = matrix(rbeta(3000,50,10) ,nrow=30)
x.bar = apply(x,2,mean)

hist(x.bar,main="sampling distribution of x.bar",xlim=c(0.6,1))

plot(density(x.bar,width=0.2) ,main="sampling distribution of
x.bar",type="1",x1lim=c(0,1))
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