Introduction to R

R is not a typical statistical analysis system. It is a flexible computer language that facilitates statistical computations. The distinct advantage of R is that the user is free to create new data-analysis schemes out of the built in components to S-plus. Furthermore, R programs can be developed in an interactive environment. Another valuable aspect of R is its ability to create excellent graphical displays.

The R command line prompt is:

```
> To exit R:
> q()
To get help in R:
> help(q)
The comment symbol is:
> # comment
```

Values can be stored in R as single values, in vectors, and in matrices. For example,

```
> x = 5
gives the value 5 to x, or
> x = c(1,5,7,8,9,10)
gives x a vector of 6 values, or
> x = matrix(x, 2, 3)
```

makes a matrix. Elements of a matrix can be accessed by

```
> x[1,2]
```

A nice way to save commands you might want to save for later execution is in a script file (*.SSC). You can type your commands into a script file and the cut-and-paste them into the command window or run them by hitting the F10 key. Type the following commands into a script file and run them.

```
z = c(5,4,8,12,10,20,25,27,14,80)

z

z = z + 5

z

z.new = z[z>10]
```

```
z.new
n = length(z)
p = length(z.new)/length(z)
р
Some useful statistics commands are:
```

```
z.mean = mean(z)
z.mean
z.var = var(z)
z.var
z.sd = sqrt(z.var)
z.sd
z.median = median(z)
z.median
z.q.50 = quantile(z, 0.50)
z.q.50
```

R functions for many common statistical distributions are available. For each distribution there is a p function that calculates c.d.f. values, a q function that calculates quantiles, a d function that calculates heights of the density curve, and a r function that calculates random values from the given distribution.

```
# Plotting density functions.
# Plot the density function of the beta distribution for different values of
# beta1 and beta2.
x = (1:99)/100
beta1 = 1
beta2 = 1
p.beta = dbeta(x,beta1,beta2)
plot(x,p.beta,main="beta densities",type="l")
par(new=T)
beta1 = 5
beta2 = 1
p.beta = dbeta(x,beta1,beta2)
plot(x,p.beta,main="beta densities",pch="+")
par(new=T)
beta1 = 1
beta2 = 5
p.beta = dbeta(x,beta1,beta2)
plot(x,p.beta,main="beta densities",pch="*")
par(new=T)
```

All commands, variables, functions, and all responses to R commands are recorded by R. To see what has been created

```
> ls()
```

To remove an object such as z, type

```
> rm(z)
```

Simulation is a way to approximate real-world processes. The key to simulation techniques is a sequence of random numbers. Some examples of simulation follow.

```
\# There are two possible outcomes. Let x be the number of heads in n flips of a fair coin. 
 n = 500
```

```
x = sample(0:1,n,replace=T)
p.hat = cumsum(x)
index = 1:n
p.hat = p.hat/index

plot(p.hat,main="relative frequency of heads",type="l",ylim=c(0,1))
p.obs = p.hat[n]
p.exp = 1/2

cbind(p.obs,p.exp)
### Simulate rolling a fair die.
```

There are six possible outcomes. Let x be the number of pips you see on each roll of a

```
# fair die.
n = 10000
x = sample(1:6,n,replace=T)
br < (1:7)-0.5
par(mfcol=c(4,1))
hist(x[1:100],nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
hist(x[1:500],nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
hist(x[1:1000],nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
hist(x[1:10000],nclass=6,breaks=br,probability=T,main="relative frequency plot - roll one die")
p.obs = table(x)/n
p.exp = numeric(6)
p.exp = c(1,1,1,1,1,1)/6
cbind(p.obs,p.exp)
### Simulate rolling a pair of fair dice.
# There are 12 possible outcomes. Let x be the sum of pips you see on each roll of the
# pair of fair dice.
n = 10000
x = matrix(sample(1:6,2*n,replace=T),2,n)
s = apply(x, 2, sum)
br = (1:13)-0.5
par(mfcol=c(4,1))
hist(s[1:100],nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice")
\verb|hist(s[1:500],nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice"|)|
hist(s[1:1000],nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice")
hist(s[1:10000],nclass=12,breaks=br,probability=T,main="relative frequency plot - roll a pair of dice"
p.obs = table(s)/n
p.exp = numeric(12)
p.exp = c(1,2,3,4,5,6,5,4,3,2,1)/36
cbind(p.obs,p.exp)
```

Just to exhibit a variance stabilizing transformation, consider a sample from the Poisson distribution.

```
### Variance Stabilizing Transformation
# Suppose X is a Poisson random variable.
# Consider a sample of n Poisson random variables.
n = 10000
lambda = 0.4
\#lambda = 1
\#lambda = 5
\#lambda = 10
x = rpois(n, lambda)
x.max = max(x)
br = (0:(x.max+1))-0.5
hist(x,nclass=(x.max+1),breaks=br,probability=T,main="relative frequency plot")
x.samplemean = mean(x)
x.samplevar = var(x)
x.ev = lambda
x.var = lambda
cbind(x.samplemean,x.ev,x.samplevar,x.var)
y = sqrt(x)
y.samplemean = mean(y)
y.samplevar = var(y)
cbind(y.samplemean,y.samplevar)
To see the CLT in action consider the following examples:
### Central Limit Theorem
# Take samples from a normal population. Plot a histogram of the sampling distribution
# of x.bar.
m = 50
sd = 10
par(mfrow=c(2,2))
```

```
x = (0:100)
p.norm = dnorm(x,m,sd)
plot(x,p.norm,main="normal density",type="l",xlim=c(0,100))
x = matrix(rnorm(3000,m,sd),nrow=30)
x.bar = apply(x,2,mean)
hist(x.bar,main="sampling distribution of x.bar",xlim=c(40,60))
plot(density(x.bar,width=5),main="sampling distribution of
x.bar",type="l",xlim=c(0,100))
# Take samples from a beta population. Plot a histogram of the sampling distribution
# of x.bar.
beta1 = 5
beta2 = 1
par(mfrow=c(2,2))
x = (1:99)/100
p.beta = dbeta(x,beta1,beta2)
plot(x,p.beta,main="beta density",type="l")
x = matrix(rbeta(3000,50,10),nrow=30)
x.bar = apply(x,2,mean)
hist(x.bar,main="sampling distribution of x.bar",xlim=c(0.6,1))
plot(density(x.bar,width=0.2),main="sampling distribution of
x.bar",type="l",xlim=c(0,1))
```