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Question 

Statisticians like to use the logarithm to transform the data when coping with survival 

or failure time data. In the SAS, its default regression algorithm for the parametric 

distribution is also utilized a logarithm transformation. So, why we like the logarithm 

transformation and what’s the internal algorithm for the SAS when coping with the 

survival data. This is what the author tries to explore in this report.  

 

Introduce of the data and graphics 

 

The dataset used in this article is named "engine", which is from the R library "ismev". 

It contains two variables and 32 observations, life span of a component, which 

designated to "Time" and corrosion degree of the component, which designated to 

"Corrosion". Here are some values in the dataset: 

          Time  Corrosion 

1  5.231237563 0.02856561 

2  0.883741162 0.11644553 

3  0.245824519 0.32556412 

…….. 

32 0.089619767 4.17895697 

 

It is reasonable to assume that degree of corrosion will effect life span of them. So, we 

plan to use a regression to construct a model between them.  

 

At first, we plot a graph of time vs corrosion with linear regression. 
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Clearly, the linear regression doesn’t fit well, because many of the observed values 

fall out of regression prediction region. Then, three other transformed models were 

plotted to try to fix the issue of model fit. 

Attempt1: Log(time) VS Corrosion 

 Attempt2: Time VS Log(Corrosion) 

 

Attempt3: Log(Time) Vs Log(Corrosion) 

 

Since more observed values are inside of prediction region, three transformed linear 

regression models perform better than the original one. However, there are still many 

logft

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

corrosion

0 1 2 3 4 5

time

0

1

2

3

4

5

6

logcorrosion

-4 -3 -2 -1 0 1 2

logft

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

logcorrosion

-4 -3 -2 -1 0 1 2



observations that fall out the predication boundaries. Therefore, we should try to use 

other method to model the parameters. 

 

Various way to model the data 

 

Traditionally, the Weibull distribution is used to model life spans of people or an 

object. For the sake of simplification, exponential distribution as one particular kind 

of the Weibull distribution is used in this article. In the exponential distribution, only 

one parameter (λ) need to be modeled. There are two ways to model λ.  

 

Model1: λ= aw
b
, where w is degree of corrosion  

Model2: λ= exp(-μ), where μ=β0+β1w 

 

Model1 is an intuitive way to model our parameter. Since it is know that life span will 

be a positive number (λ>0) and a univariate model is used, polynomial model come to 

the sense naturally.  

 

Model2 is accelerated failure time model, which is often used in survival analysis in 

biostatistics. This model is performed in SAS LIFEREG procedure with the 

assumption of exponential distribution. 

 

Table 1 shows the analysis of MLE estimates and model log-likelihood 

 

Model Estimate A Estimate B  CI for B Model 

log-likelihood 

Model1 1.133005(a) 0.4792074(b) (0.1338348, 

0.8245801) 

-21.71021 

Model2 0.6184(intercept) -0.4503(corrosion) (-0.7416, 

-0.1590) 

-55.3984948 

 

 

Even through two models are under the same distribution, the parameter estimates and 

likelihood are very different. It makes people wandering how to connect two models. 

Therefore, model3 is created to explore the connection.  

 

Model3 is performed under SAS LIFEREG procedure, using -log(corrosion) as factor.  

 

Table 2 

Model Estimate A Estimate B  CI for B Model 

log-likelihood 

Model1 1.133005(a) 0.4792074(b) (0.1338348, 

0.8245801) 

-21.71021 

Model3 -0.1249 

(intercept) 

0.4792 

(-log(corrosion)) 

(0.1338, 

0.8246) 

-54.37371518 



Notice that Model3 has same MLE and CI for estimate B. Also, if you take e
-0.1249

 in 

estimate A of Model 3, it will equal to 1.133005 in estimate A of Model1. The 

difference between two models will be model log-likelihood. 

 

Model4 is produced to fix the log-likelihood. Model4 is modified from Model1 with 

the same parameter setup but transforming failure time to log(failure time).  

 

Table 3 

Model Estimate A Estimate B  CI for B Model 

log-likelihood 

Model3 -0.1249 

(intercept) 

0.4792 

(-log(corrosion)) 

(0.1338, 

0.8246) 

-54.37371518 

Model4 1.133005(a) 0.4792074(b) (0.1338348, 

0.8245801) 

-54.37372 

 

Model3 and Model4 are mathematically "close", since they have the same MLE, CI 

for B and log-likelihood.  

 

Mathematical connection between models 

 

Let's start with equations to model λ. Model3 changes the factor in Model2 from 

corrosion to -log(corrosion). Mathematically,  

  

 

 

 

 

 

 

If we set a= exp(-β0), the equation of λ in Model3 will have the same form with 

Model1, where λ= aw
b
. 

 

Then, Model4 log transforms failure time and matches with the log-likelihood in 

Model3. Mathematically, in model1 

 

 

 

 

 

 

 

 

 

 

λ= exp(-β0- β1*(-log(w)))                         

= exp(-β0)* exp(+β1*log(w)) 

= exp(-β0)* exp(+log (w)
 β1

) 

= exp(-β0)* w 
β1

 ,                                          (1) 

where w is the corrosion, β0 is intercept, β1 is estimate B.       

 

X1, X2,…… , Xn follows Exp(λ) 

f(x)= λexp(-λx) 

Also, we set λ=aw
b
 

Then, the loglikehood, 

L(a, b)= n*log(a) + b*  log(wi)n
1  - a* wib ∗ ftn

1                    (2) 

 



 

Third step, since we know the two models parameterization is essentially the same; 

the only difference will only come from the transformed response.  

 

In Model3, failure time is transformed. Mathematically,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The likelihood from (4) 

 

 

 

 

The log-likelihood from (5) 

 

 

 

 

 

 

 

 

 

 

Notice that, yi is log(failure time) so that e
yi

 = failure time, which is ft in the R 

program. Comparing with (1) and (6), the only difference between logarithm 

transformed log-likelihood and original log-likelihood is  yin
1 .  

 

again, X1, X2,….., Xn comes from Exp(λ) 

f(x)= λ exp(-λx) 

 

Set Y= Ln(X), the logarithm transformation. 

 

f(y)= f(e
y
) * |de

y
 / dy|,    by proposition D                      

 

f(y)= λ* exp(-λe
y
) * e

y
 

=λ* exp( y-λe
y
)                                        (3) 

 

Plug in λ= aw
b
 into (3) 

 

f(y)= aw
b
 exp(y- aw

b
e

y
)                                     (4) 

 

L(a,b)= f(x1,x2,…..xn| a, b)=  [awb  exp(y −  awbey)]n
1           (5) 

 

ll(a,b)= log{ [awb  exp(y −  awb ey)]n
1 }    

              

     = log(awb  exp(y −  awb ey))n
1  

 

     =  [log a + b ∗ log wi + yi − awibeyin
1 ] 

 

     = n*log(a)+b* log(wi)n
1 + yin

1 - a* wibeyin
1               (6) 

 



Discussion 

 

1. The accelerated failure time model can be reduced to a more intuitive model, such 

as model4, by setting covariates to negative log transformed covariates. This 

model is not necessarily meaningful in the practice but it provides unique insight 

on the mathematics behind the model and relationship between different models 

under the same assumption. 

 

2. Logarithm transformation will move the model log-likelihood up or down in 

parallel. The deviance which is the distance between null hypothesis and 

alternative hypothesis will not change.  

 

3. After log transformation, MLEs of parameters in the model don’t change. Also, 

the standard errors and confidence interval of those covariates don’t change as 

well. This property means the transformation won’t change the relation between 

response and factors, therefore let us to do the log transformation freely without 

making arbitrarily changes in the dataset. 

 

4. The log transformation does not necessarily improve the model fit. In fact, in the 

case Model 1 and Model4, original model performs better than the transformed 

model, due to outliers in Model4.   

          Model 1                           Model4 

  

 

                                 

   

 

 

 

 

 

 



Appendix  

  

1. Modified R code from Dr. Suess's ft.R code.  

 

library(ismev) 

library(stats4) 

 

# data from the ismev library 

#  

 

data(engine) 

 

ft = engine$Time    # failure time 

n = length(ft)      # sample size 

w = engine$Corrosion   # corrosion measurement 

 

plot(w,ft) 

 

log.ft=log(ft) 

log.w=log(w) 

 

# MLE 

 

# solve the nonlinear equation  

 

# minus the log likelihood 

 

ll = function(a,b) {  

  -n*log(a) - b*sum(log(w))- sum(log.ft) + a*sum((w^b)*exp(log.ft)) 

} 

 

model.mle = mle(minuslog=ll,start=list(a=1,b=1))  

model.mle 

 

a.mle = coef(model.mle)[1] 

a.mle 

b.mle = coef(model.mle)[2] 

b.mle 

 

ll.value = -ll(a.mle,b.mle) 

ll.value 

 

# CIs for a and b, the CI for b matches with accelerated ft model  

# of transformed corrison level.   



 

I.O = matrix(c( n*a.mle^-2, sum(w^b.mle*ft*log(w)), 

sum(w^b.mle*ft*log(w)), a.mle*sum(w^b.mle*ft*log(w)^2) ), c(2,2)) 

I.O  

 

I.O.inv = solve(I.O)  # produces the matrix inverse 

I.O.inv 

 

a.mle.se = sqrt(I.O.inv[1,1]) 

a.mle.se 

 

conf.level = 0.95 

cv = qnorm(1-(1-conf.level)/2) 

 

a.ci = c(a.mle - cv*a.mle.se,a.mle + cv*a.mle.se) 

a.ci 

 

 

b.mle 

 

b.mle.se = sqrt(I.O.inv[2,2]) 

b.mle.se 

 

b.ci = c(b.mle - cv*b.mle.se,b.mle + cv*b.mle.se) 

b.ci  

 

 

# Test if H0: b=0, H1: b=/= 0  

a.mle.small = n/sum(ft) 

a.mle.small 

 

# log-likelihood of null hypothysis 

ll.value.small = n*log(a.mle.small)+sum(log.ft)-a.mle.small*sum(exp(log.ft)) 

ll.value.small 

 

# Deviance is the same with the model before the log transformation 

D = 2*(ll.value - ll.value.small) 

D 

 

 

# plot fitted model, I am not sure this is right. 

 

a.mle = coef(model.mle)[1] 

a.mle 



b.mle = coef(model.mle)[2] 

b.mle 

 

w.index = seq(min(w),max(w),0.01) 

 

ft.fit = (a.mle^-1)*w.index^(-b.mle) 

log.ft.fit=log(ft.fit) 

 

plot(w,log.ft,xlab="Corrosion Level",ylab="Transformed Lifetime",main="Fitted 

Model") 

lines(w.index,log.ft.fit,type="l",col=3) 

 

2. SAS code 

data mydata; 

input time 12.10 corrosion 12.10 ; 

datalines; 

 5.231237563 0.02856561 

 0.883741162 0.11644553 

 0.245824519 0.32556412 

 3.737508046 0.36187570 

 1.193548683 0.77289500 

 0.744449009 1.07671243 

 0.000331672 1.40806603 

 2.212633058 1.53019431 

 0.099889341 1.56819203 

 0.157013076 1.64420582 

 0.593876487 1.64440864 

 0.545076312 1.66461209 

 2.782713173 1.69701454 

 0.955511842 1.74957354 

 0.120548481 1.78876443 

 0.388568088 1.87775873 

 0.145561389 1.88814442 

 0.392746324 2.02600741 

 0.234012534 2.05149663 

 0.613340116 2.19011591 

 0.359726135 2.36558148 

 0.020013325 2.39948193 

 0.085350498 2.56172240 

 0.837877708 2.56528502 

 1.491809687 2.62078743 

 0.080670417 2.71643983 

 1.210000996 2.92964335 

 0.798518117 3.33795520 



 0.450192367 3.40658882 

 0.609792042 3.86109929 

 0.308168774 4.16830998 

 0.089619767 4.17895697 

; 

run; 

 

data mydata1; 

set mydata; 

logcorrosion=-log(corrosion); 

logcorrosion1=log(corrosion) 

logft=log(time); 

run; 

 

symbol2 v=dot i=rlclm90 width=2 cv=black ci=red co=green; 

proc gplot data=mydata1; 

plot time*corrosion; 

plot logft*corrosion; 

plot time*logcorrosion1; 

plot logft*logcorrosion1; 

run; 

 

proc lifereg data=mydata1; 

model time= corrosion/ dist=exponential covb; 

run; 

 

proc lifereg data=mydata1; 

model time= logcorrosion/ dist=exponential covb; 

output out= stat p=predict std=stde xbeta=phi; 

run; 

 

proc print data=stat; 

run; 

 

 

 

quit; 


