
A connection between accelerated failure time model and λ= aw
b

model (Draft)

By Xintong Li (Gary)

Question

Statisticians like to use the logarithm to transform the data when coping with survival

or failure time data. In the SAS, its default regression algorithm for the parametric

distribution is also utilized a logarithm transformation. So, why we like the logarithm

transformation and what’s the internal algorithm for the SAS when coping with the

survival data. This is what the author tries to explore in this report.

Introduce of the data and graphics

The dataset used in this article is named "engine", which is from the R library "ismev".

It contains two variables and 32 observations, life span of a component, which

designated to "Time" and corrosion degree of the component, which designated to

"Corrosion". Here are some values in the dataset:

 Time Corrosion

1 5.231237563 0.02856561

2 0.883741162 0.11644553

3 0.245824519 0.32556412

……..

32 0.089619767 4.17895697

It is reasonable to assume that degree of corrosion will effect life span of them. So, we

plan to use a regression to construct a model between them.

At first, we plot a graph of time vs corrosion with linear regression.

time

0

1

2

3

4

5

6

corrosion

0 1 2 3 4 5

Clearly, the linear regression doesn’t fit well, because many of the observed values

fall out of regression prediction region. Then, three other transformed models were

plotted to try to fix the issue of model fit.

Attempt1: Log(time) VS Corrosion

 Attempt2: Time VS Log(Corrosion)

Attempt3: Log(Time) Vs Log(Corrosion)

Since more observed values are inside of prediction region, three transformed linear

regression models perform better than the original one. However, there are still many

logft

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

corrosion

0 1 2 3 4 5

time

0

1

2

3

4

5

6

logcorrosion

-4 -3 -2 -1 0 1 2

logft

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

logcorrosion

-4 -3 -2 -1 0 1 2

observations that fall out the predication boundaries. Therefore, we should try to use

other method to model the parameters.

Various way to model the data

Traditionally, the Weibull distribution is used to model life spans of people or an

object. For the sake of simplification, exponential distribution as one particular kind

of the Weibull distribution is used in this article. In the exponential distribution, only

one parameter (λ) need to be modeled. There are two ways to model λ.

Model1: λ= aw
b
, where w is degree of corrosion

Model2: λ= exp(-μ), where μ=β0+β1w

Model1 is an intuitive way to model our parameter. Since it is know that life span will

be a positive number (λ>0) and a univariate model is used, polynomial model come to

the sense naturally.

Model2 is accelerated failure time model, which is often used in survival analysis in

biostatistics. This model is performed in SAS LIFEREG procedure with the

assumption of exponential distribution.

Table 1 shows the analysis of MLE estimates and model log-likelihood

Model Estimate A Estimate B CI for B Model

log-likelihood

Model1 1.133005(a) 0.4792074(b) (0.1338348,

0.8245801)

-21.71021

Model2 0.6184(intercept) -0.4503(corrosion) (-0.7416,

-0.1590)

-55.3984948

Even through two models are under the same distribution, the parameter estimates and

likelihood are very different. It makes people wandering how to connect two models.

Therefore, model3 is created to explore the connection.

Model3 is performed under SAS LIFEREG procedure, using -log(corrosion) as factor.

Table 2

Model Estimate A Estimate B CI for B Model

log-likelihood

Model1 1.133005(a) 0.4792074(b) (0.1338348,

0.8245801)

-21.71021

Model3 -0.1249

(intercept)

0.4792

(-log(corrosion))

(0.1338,

0.8246)

-54.37371518

Notice that Model3 has same MLE and CI for estimate B. Also, if you take e
-0.1249

 in

estimate A of Model 3, it will equal to 1.133005 in estimate A of Model1. The

difference between two models will be model log-likelihood.

Model4 is produced to fix the log-likelihood. Model4 is modified from Model1 with

the same parameter setup but transforming failure time to log(failure time).

Table 3

Model Estimate A Estimate B CI for B Model

log-likelihood

Model3 -0.1249

(intercept)

0.4792

(-log(corrosion))

(0.1338,

0.8246)

-54.37371518

Model4 1.133005(a) 0.4792074(b) (0.1338348,

0.8245801)

-54.37372

Model3 and Model4 are mathematically "close", since they have the same MLE, CI

for B and log-likelihood.

Mathematical connection between models

Let's start with equations to model λ. Model3 changes the factor in Model2 from

corrosion to -log(corrosion). Mathematically,

If we set a= exp(-β0), the equation of λ in Model3 will have the same form with

Model1, where λ= aw
b
.

Then, Model4 log transforms failure time and matches with the log-likelihood in

Model3. Mathematically, in model1

λ= exp(-β0- β1*(-log(w)))

= exp(-β0)* exp(+β1*log(w))

= exp(-β0)* exp(+log (w)
 β1

)

= exp(-β0)* w
β1

 , (1)

where w is the corrosion, β0 is intercept, β1 is estimate B.

X1, X2,…… , Xn follows Exp(λ)

f(x)= λexp(-λx)

Also, we set λ=aw
b

Then, the loglikehood,

L(a, b)= n*log(a) + b* log(wi)n
1 - a* wib ∗ ftn

1 (2)

Third step, since we know the two models parameterization is essentially the same;

the only difference will only come from the transformed response.

In Model3, failure time is transformed. Mathematically,

The likelihood from (4)

The log-likelihood from (5)

Notice that, yi is log(failure time) so that e
yi

 = failure time, which is ft in the R

program. Comparing with (1) and (6), the only difference between logarithm

transformed log-likelihood and original log-likelihood is yin
1 .

again, X1, X2,….., Xn comes from Exp(λ)

f(x)= λ exp(-λx)

Set Y= Ln(X), the logarithm transformation.

f(y)= f(e
y
) * |de

y
 / dy|, by proposition D

f(y)= λ* exp(-λe
y
) * e

y

=λ* exp(y-λe
y
) (3)

Plug in λ= aw
b
 into (3)

f(y)= aw
b
 exp(y- aw

b
e

y
) (4)

L(a,b)= f(x1,x2,…..xn| a, b)= [awb exp(y − awbey)]n
1 (5)

ll(a,b)= log{ [awb exp(y − awb ey)]n
1 }

 = log(awb exp(y − awb ey))n
1

 = [log a + b ∗ log wi + yi − awibeyin
1]

 = n*log(a)+b* log(wi)n
1 + yin

1 - a* wibeyin
1 (6)

Discussion

1. The accelerated failure time model can be reduced to a more intuitive model, such

as model4, by setting covariates to negative log transformed covariates. This

model is not necessarily meaningful in the practice but it provides unique insight

on the mathematics behind the model and relationship between different models

under the same assumption.

2. Logarithm transformation will move the model log-likelihood up or down in

parallel. The deviance which is the distance between null hypothesis and

alternative hypothesis will not change.

3. After log transformation, MLEs of parameters in the model don’t change. Also,

the standard errors and confidence interval of those covariates don’t change as

well. This property means the transformation won’t change the relation between

response and factors, therefore let us to do the log transformation freely without

making arbitrarily changes in the dataset.

4. The log transformation does not necessarily improve the model fit. In fact, in the

case Model 1 and Model4, original model performs better than the transformed

model, due to outliers in Model4.

 Model 1 Model4

Appendix

1. Modified R code from Dr. Suess's ft.R code.

library(ismev)

library(stats4)

data from the ismev library

data(engine)

ft = engine$Time # failure time

n = length(ft) # sample size

w = engine$Corrosion # corrosion measurement

plot(w,ft)

log.ft=log(ft)

log.w=log(w)

MLE

solve the nonlinear equation

minus the log likelihood

ll = function(a,b) {

 -n*log(a) - b*sum(log(w))- sum(log.ft) + a*sum((w^b)*exp(log.ft))

}

model.mle = mle(minuslog=ll,start=list(a=1,b=1))

model.mle

a.mle = coef(model.mle)[1]

a.mle

b.mle = coef(model.mle)[2]

b.mle

ll.value = -ll(a.mle,b.mle)

ll.value

CIs for a and b, the CI for b matches with accelerated ft model

of transformed corrison level.

I.O = matrix(c(n*a.mle^-2, sum(w^b.mle*ft*log(w)),

sum(w^b.mle*ft*log(w)), a.mle*sum(w^b.mle*ft*log(w)^2)), c(2,2))

I.O

I.O.inv = solve(I.O) # produces the matrix inverse

I.O.inv

a.mle.se = sqrt(I.O.inv[1,1])

a.mle.se

conf.level = 0.95

cv = qnorm(1-(1-conf.level)/2)

a.ci = c(a.mle - cv*a.mle.se,a.mle + cv*a.mle.se)

a.ci

b.mle

b.mle.se = sqrt(I.O.inv[2,2])

b.mle.se

b.ci = c(b.mle - cv*b.mle.se,b.mle + cv*b.mle.se)

b.ci

Test if H0: b=0, H1: b=/= 0

a.mle.small = n/sum(ft)

a.mle.small

log-likelihood of null hypothysis

ll.value.small = n*log(a.mle.small)+sum(log.ft)-a.mle.small*sum(exp(log.ft))

ll.value.small

Deviance is the same with the model before the log transformation

D = 2*(ll.value - ll.value.small)

D

plot fitted model, I am not sure this is right.

a.mle = coef(model.mle)[1]

a.mle

b.mle = coef(model.mle)[2]

b.mle

w.index = seq(min(w),max(w),0.01)

ft.fit = (a.mle^-1)*w.index^(-b.mle)

log.ft.fit=log(ft.fit)

plot(w,log.ft,xlab="Corrosion Level",ylab="Transformed Lifetime",main="Fitted

Model")

lines(w.index,log.ft.fit,type="l",col=3)

2. SAS code

data mydata;

input time 12.10 corrosion 12.10 ;

datalines;

 5.231237563 0.02856561

 0.883741162 0.11644553

 0.245824519 0.32556412

 3.737508046 0.36187570

 1.193548683 0.77289500

 0.744449009 1.07671243

 0.000331672 1.40806603

 2.212633058 1.53019431

 0.099889341 1.56819203

 0.157013076 1.64420582

 0.593876487 1.64440864

 0.545076312 1.66461209

 2.782713173 1.69701454

 0.955511842 1.74957354

 0.120548481 1.78876443

 0.388568088 1.87775873

 0.145561389 1.88814442

 0.392746324 2.02600741

 0.234012534 2.05149663

 0.613340116 2.19011591

 0.359726135 2.36558148

 0.020013325 2.39948193

 0.085350498 2.56172240

 0.837877708 2.56528502

 1.491809687 2.62078743

 0.080670417 2.71643983

 1.210000996 2.92964335

 0.798518117 3.33795520

 0.450192367 3.40658882

 0.609792042 3.86109929

 0.308168774 4.16830998

 0.089619767 4.17895697

;

run;

data mydata1;

set mydata;

logcorrosion=-log(corrosion);

logcorrosion1=log(corrosion)

logft=log(time);

run;

symbol2 v=dot i=rlclm90 width=2 cv=black ci=red co=green;

proc gplot data=mydata1;

plot time*corrosion;

plot logft*corrosion;

plot time*logcorrosion1;

plot logft*logcorrosion1;

run;

proc lifereg data=mydata1;

model time= corrosion/ dist=exponential covb;

run;

proc lifereg data=mydata1;

model time= logcorrosion/ dist=exponential covb;

output out= stat p=predict std=stde xbeta=phi;

run;

proc print data=stat;

run;

quit;

