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Introduction to Bayesian Estimation

Some important applications of Bayesian statistical inference rely on com-
putational methods. In particular, Chapters 9-XX of this book illustrate
the computational role of the Gibbs sampler in Bayesian estimation. By
way of preparation, this chapter introduces some of the fundamental ideas
of Bayesian estimation.

Bayesian and frequentist statistical inference take fundamentally differ-
ent viewpoints toward statistical decision making.

o The frequentist view of probability, and thus of statistical inference,
is based on the idea of an experiment that can be repeated many
times.

e The Bayesian view of probability and of inference is based on a per-
sonal assessment of probability and on observations from a single
performance of an experiment.

Frequentists and Bayesians use fundamentally different procedures of es-
timation, and the interpretations of the resulting estimates are also fun-
damentally different. In practical application, both ways of thinking have
advantages and disadvantages, some of which we will explore here.
Statistics is a young science. For example, interval estimation and hy-
pothesis testing have become common in scientific research and business
decision making only within the past 75 years, and then only gradually. On
this time scale it seems strange to talk about “traditional” approaches. But
frequentist viewpoints are currently much better established, particularly
in scientific research, than Bayesian ones. Recently, the use of Bayesian
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methods has been increasing, partly because the Bayesian approach seems
to be able to get more useful solutions than frequentist ones in some appli-
cations and partly because improvements in computation have made these
methods easier—or feasible-to apply in practice. The Gibbs sampler is one
computationally intensive method that is broadly applicable in Bayesian
estimation.

For some of the very simple examples considered here, Bayesian and
frequentist methods give similar results. But that is not the main point. We
hope you will gain some appreciation that Bayesian methods are sometimes
the most natural and useful ones in practice. Also, we hope you will begin
to appreciate the essential role of computation in Bayesian estimation.

For most people, the starkest contrast between frequentist and Bayesian
approaches is that Bayesian inference provides the opportunity—even im-
poses the requirement—explicitly to take into account “information” that
is available before any data are collected. That is where we begin.

8.1 Prior Distributions

The Bayesian approach to statistical inference treats population param-
eters as random variables (not as fixed, unknown constants). The distri-
butions of these parameters are called prior distributions. Often both
expert knowledge and mathematical convenience play a role in selecting a
particular type of prior distribution. This is easiest to explain and to un-
derstand in terms of examples. Here we introduce three examples that we
carry through subsequent sections of this chapter.

Example 8.1.1 Election polling. Suppose Proposition A is on the ballot
for an upcoming statewide election, and a political consultant has been
hired to help manage the campaign for its passage. The proportion 7 of
prospective voters who currently favor Proposition A is the population
parameter of interest here. Based on her knowledge of the politics of the
state, the consultant’s judgment is that the proposition is almost sure to
pass, but not by a large margin. She believes that the most likely proportion
of voters in favor is 55% and that the percentage is not likely to be below
51% or above 59%.

It is reasonable to consider the beta distribution to model the expert’s
opinion of the proportion in favor because distributions in the beta family
take values in the interval (0, 1) as do proportions. This family of distribu-
tions has density functions of the form

p(r) = Kn® (1 -m)Pt
x w1 -7)PL,

where a, 8 > 0 and K is the constant such that fol p(m)dr = 1. Here we
adopt two conventions that are common in Bayesian discussions: the use
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of the letter p instead of f to denote a density function, and the use of
the symbol o (read “proportional to”) instead of = so that we can avoid
specifying a constant whose exact value is unimportant to the discussion.
The essential factor of the density function that remains when the con-
stant is suppressed is called the kernel of the density function (or of its
distribution).

A member of the beta family that corresponds reasonably well to the
expert’s opinion has ag = 330 and fy = 270. (See the broken curve in
Figure 1.) This is a reasonable choice of parameters for several reasons.

o This beta distribution is centered near 0.55 = 55% by any of the
common measures of centrality. By analytic methods one can show
that the mean of this distribution is ao/(ao + Bo) = 330/600 =
55.00% and that its mode is (ag — 1)/(ap + Bo — 2) = 329/598 =
55.02%. Computational methods show the median to be 55.01%. (The
S-Plus function gbeta(.5, 330, 270) returns 0.5500556.) In 7777
we discuss criteria for selecting which measure of centrality to use,
but here it doesn’t make any practical difference.

e Also, numerical integration shows that these parameters match the
expert’s prior probability interval fairly well: P{0.51 < 7 < 0.59} ~
0.95. (In S-Plus, pbeta(.59, 330, 270) - pbeta(.51, 330, 270)
returns 0.9513758.)

Of course, slightly different choices for ag and Sy would match the ex-
pert’s opinion about as well. It is not necessary to be any fussier in choosing
the parameters than the expert was in specifying her hunches. Also, distri-
butional shapes other than the beta might match the expert’s opinion just
as well. But we choose a member of the beta family because it makes the
mathematics relatively easy in what comes later and because we have no
reason to believe that the shape of our beta distribution is inappropriate
here. (See Problems 1 and 2.)

If the consultant’s judgments about the political situation are correct,
then they may be helpful in managing the campaign. If she too often brings
bad judgment to her clients, her reputation will suffer and she will be out
of the political consulting business before long. Fortunately, as we will see
in the next section, the details of her judgments become less important if
we also have some polling data to rely upon.

Example 8.1.2 Weighing an object. A construction company buys steel
beams with a nominal weight of 200 lb. Experience with a particular sup-
plier of these beams has shown that their beams very seldom weigh less
than 180 or more than 220 lb. In these circumstances it may be convenient
and reasonable to use NORM(200, 10) as the prior distribution of the weight
of a randomly chosen beam from this supplier.

Usually, the exact weight of a bearm is not especially important, but there
are some situations in which it is crucial to know the weight of a beam more
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precisely. Then a particular beam is selected and weighed several times on
a scale in order to determine its true weight more accurately.
Theoretically, a frequentist statistician would ignore “prior” or back-
ground experience in doing statistical inference, basing statistical decisions
only on the data collected when a beam is weighed. In real life it is not so
simple. For example, the design of the weighing experiment will very likely
take past experience into account in one way or another. (For example,
if you are going to be weighing things you need to know whether you’ll
be using a laboratory balance, a truck scale, or some intermediate kind of
scale. And if you need more precision than the scale will give in a single
measurement, you may need to weigh each object several times and take
the average.) For the Bayesian statistician the explicit codification of some
kinds of background information into a prior distribution is a required first

step. ¢

Example 8.1.3 Counting mice. An island in the middle of a river is one
of the last known habitats of an endangered kind of mouse. The mice rove
about the island in ways that are not fully understood and so are taken as
random.

Ecologists are interested in the average number of mice to be found in
particular regions of the island. To do the counting in a region they set
many traps there at night, using bait that is irresistible to mice at close
range. In the morning they count and release the mice caught. It seems
reasonable to suppose that almost all of the mice in the region around the
trap during the previous night were caught and that the number of them
on any one night has a Poisson distribution. The purpose of the trapping
is to estimate the mean A of this distribution.

Even before the trapping is done the ecologists doing this study have
some information about A. For example, even though the mice are quite
shy, there have been occasional sightings of them in almost all regions of
the island, so it seems likely that A > 1. On the other hand, from what is
known of the habits of the mice and the food supply in the regions, it seems
unlikely that there would be as many as 25 of them in any one region at a
given time.

In these circumstances, it seems reasonable to use a gamma distribu-
tion as a prior distribution for A. This gamma distribution has the density
p(A) o« A*le™** for A > 0, where the shape parameter o and the rate
parameter k must both be positive. First, we choose a gamma distribution
because it puts all of its probability on the positive half line, and A must
surely have a positive value. Second, we choose a member of the gamma
family because it simplifies some important computations that we need to
do later.

Using straightforward calculus, one can show that a distribution in the
gamma family has mean a/&, mode (a — 1)/, and variance a/x2. These
distributions are right-skewed, with the skewness decreasing as « increases.
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Let’s see what happens if we choose a gamma density with ap = 4 and
ko = 1/3 as a prior distribution for A. Reflecting the skewness, the mean
12, median 11.02, and mode 9 are noticeably different. (We obtained the
median using S-Plus: qgamma (.5, 4, 1/3) returns 11.01618.) Numerical
methods also show that P{\ < 25} = 0.97. (In S-Plus, pgamma(25, 4,
1/3) returns 0.9662266.) All of these values are consistent with the the
expert opinions of the ecologists.

It is clear that the experience of the ecologists with the island and its en-
dangered mice will influence the course of this investigation in many ways:
dividing the island into meaningful regions, modelling the randomness of
mouse movement as Poisson, deciding how many traps to use and where
to place them, choosing a kind of bait that will attract mice from a re-
gion of interest but not from all over the island, and so on. The expression
of some of their background knowledge as a prior distribution is perhaps
a relatively small use of their expertise. But it is a necessary first step in
Bayesian inference, and it is perhaps the only aspect of their expert opinion
that will be explicitly tempered by the data that are collected. ¢

8.2 Data and Posterior Distributions

The second step in Bayesian inference is to collect data and to combine
the information in the data with the expert opinion represented by the
prior distribution. The result is a posterior distribution that can be used
for inference.

Once the data are available, we can use Bayes’ Theorem to compute the
posterior distribution w|z. Equation (5.4) states an elementary version of
Bayes’ Theorem for an observed event E and a partition {4, 4a,..., Ax}
of the sample space S. It expresses a posterior probability P(A4;|E) in terms
of the prior probabilities P(A;) and the conditional probabilities P(E|A4;).
Here we use a more general version of Bayes’ Theorem involving data z
and a parameter 7:

L pmplein)
P(TE) = T rmp(elm) dr

o p(m)p(zlr), (8.1)

where the integral is taken over all values of 7 for which the integrand is
possible. (In case the distribution of 7 is discrete, the integral is interpreted
as a sum.) The proportionality symbol « is appropriate because the inte-
gral is a constant. (In case the distribution of = is discrete, the integral is
interpreted as a sum.)

Thus the posterior distribution of 7|z is found from the prior distribution
of 7 and the distribution of the data x given 7. If 7 is a known constant,
p(z}m) is the density function of z; we might integrate it with respect to
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z to evaluate the probability P(z € A) = [,p(z)dz. However, when we
use (8.1) to find a posterior, we know the data z, and we view p(z|m) as
a function of 7. When viewed in this way, p(z|7) is called the likelihood
function of 7. (Technically, the likelihood function is defined only up to a
positive constant.)

A convenient summary of of our procedure for finding the posterior dis-
tribution with relationship (8.1) is to say

POSTERIOR « PRIOR x LIKELIHOOD.

We now illustrate this procedure for each of the examples of the previous
section.

Example 8.2.1 Election Polling (continued). Suppose that n ran-
domly selected subjects express opinions on Proposition A. What is the
likelihood function, and how do we use it to find the posterior distribu-
tion? If the value of # were known, the number z of the respondents in
favor of Proposition A is a random variable with the binomial distribu-
tion: (2)n®(1 — )" *, for x =0,1,2,...,n. So, now that we have data z,
plz|m)y oc 7% (1 — 7)™~ is the likelihood function of «.
Display (8.1) gives the posterior distribution

p(rlz) o w1 —7)fel x g%(1 - )®
o 7ra0+m—1(1 _ ﬂ.)ﬂo+nz—l,

where we recognize the last line as the kernel of a beta distribution with
parameters a, = ap +z and 8, = fo + n — z. It is easy to find the
posterior in this case because the (beta) prior distribution we selected has
a functional form that is similar to that of the (binomial) distribution of
the data, yielding a (beta) posterior. In this case we say that the beta is a
conjugate prior for binomial data.

Recall that the parameters of the prior beta distribution are ay = 330
and Sy = 270. If z = 620 of the n = 1000 respondents favor Proposition A,
then the posterior has a beta distribution with parameters ag + x = 950
and By + n — z = 650. Look at Figure 1 for a visual comparison of the
prior and posterior distributions. The density curves were plotted with the
following S-Plus script. (Using lines is one way to plot more than one
curve on the same axes.)

x <- seq(.45,.7,.001)

y <- dbeta(x,330,270); =z <- dbeta(x,950,650)

plot(x,z,type="1",ylim=c(0,35),
xlab="Proportion in Favor",ylab="Density")

lines(x,y,1ty=4,col=2)

The posterior mean is 950/(950 + 650) = 59.4%, a Bayesian point es-
timate of the actual proportion of the population currently in favor of
Proposition A. Also, according to the posterior distribution, P{0.570 <
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7 < 0.618} = 0.95, so that a 95% posterior probability interval for the
proportion in favor is (57.0%, 61.8%). (In S-Plus, gbeta(.025, 950, 650)
returns 0.5695848, and qbeta(.975, 950, 650) returns 0.6176932.)

This probability interval resulting from Bayesian estimation is a straight-
forward probability statement. Based on the combined information from
her prior distribution and from the polling data, the political consultant
now believes it is very likely that between 57% and 62% of the population
currently favors Proposition A. In contrast to a frequentist “confidence”
interval, the consultant can use the probability interval without the need
to view the poll as a repeatable experiment.

Example 8.2.2 Weighing a beam (continued)}. Suppose that a par-
ticular beam is selected from among the beams available. Recall that, ac-
cording to our prior distribution, the weights of beams in this population is
NORM(200, 10) so that po = 100 pounds and oo = 10 pounds. The beam is
weighed n = 5 times on a balance that gives unbiased, normally distributed
readings with a standard deviation of ¢ = 1 pound. Denote the data by
x = (z1,...,Z,), where the z; are independent NORM(y, o), and p is the
parameter to be estimated. Such data have the likelihood function

n

p(xl) ox exp [—% (@: - m?] ,

i=1

where the distribution of p is determined by the prior, and ¢ = 1 is known.
Then after some algebra (see Problem 6), the posterior is

p(plx) o< p(p)p(x|p) o exp[—(p — pn)?/207),

which is the kernel of NORM(u,,, 0,,), where

1 n =
“THo + 3T 1
=2 %  and o=
Hn = 1 n n 1 4+ :
(_7—8- oo ;g -d_f

It is common to use the term precision to refer to the reciprocal of a
variance. If we define 7o = 1/02, 7 = 1/02, and 7, = 1/02, then the last

two equations become
T0 nr

= + Z and T, =1 +nT
Hin 7'0+1’LT“0 To + NT " 0

Thus, we say that the posterior precision is the sum of the precisions of
the prior and the data, and that the posterior mean is a precision-weighted
average of the means of the prior and the data.

In our example, 7o = 0.01, 7 = 1, and 7, = 5.01. And the weights are
0.01/5.01 & 0.002 for the prior mean and 5/5.01 = 0.998 for the mean of the
data. Thus, the posterior precision is almost entirely due to the precision
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of the data, and the value of the posterior mean is almost entirely due to
the mean of the sample. In this case, the sample of five relatively high-
precision observations is enough to concentrate the posterior and diminish
the impact of the prior. (See Problem 7 and Figure 2 for the computation
of the posterior mean and a posterior probability interval.) ¢

Example 8.2.3 Counting mice (continued). Suppose that a region of
the island is selected where the gamma distribution with parameters ap = 4
and k9 = 1/3 is a reasonable prior for A\. The prior density is p(A) o
20— 1 e—no,\'

Over a period of about a year, traps are set out on n = 50 nights with
the total number of captures ¢ = E?ﬁl z; = 256 for an average of 5.12
mice captured per night. Thus the Poisson likelihood function of the data
is p(x|A) o [T, A%ie™ = Ale™™,

Then the posterior distribution is

p()\lx) x /\ao—le—no)\ x )\te——n)\ — )\ao+t—le—(no+n))\7

in which we recognize the kernel of the beta distribution with parame-
ters a, = ag + t and K, = kg + n. Thus the posterior mean is a,/k, =
(ag + t) /(K0 + n). For our particular prior and data, the posterior mean is
(4+256) /(% +50) = 260/50.33 = 5.17. Based on the posterior, a 95% prob-
ability interval for X is (4.56,5.81). (In S-Plus, qgamma(.025, 260, 50.33)
returns 4.557005, and qgamma (. 975, 260, 50.33) returns 5.812432.) The
prior and posterior densities are shown in Figure 3. ¢

8.3 Problems

1. In practice, the Beta family of distributions offers a rich variety of
shapes for modeling priors to match expert opinion.

(a) Beta densities are defined on the open unit interval. Show that
parameter a controls behavior of the density function near 0.
In particular, find p(0*) and p'(0") in each of the following five
cases:a < l,a=1,1<a <2, a=2, and a > 2. Evaluate each
limit as being 0, positive and finite, 0o, or —oo. (As usual, 0*
means to take the limit as the argument approaches 0 through
positive values.)

(b) By symmetry, parameter § controls behavior of the density func-
tion near 1. Thus, combinations of the parameters yield 25 cases,
each with its own “shape” of density. In which of these 25 cases
does the density have a unique mode in (0,1)? The number of
possible inflection points of a beta density curve is 0, 1, or 2.
For each of the 25 cases, give the number of inflection points.
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The S-Plus script below plots examples of each of the 25 cases,
scaled vertically (with top) to show the properties in parts (a)
and (b) about as well as can be done and yet show most of each
curve. Compare this matrix of plots with your results above (a-
cases are rows, f-cases are columns). In this display, which three
of the 25 densities can be made assymetrical by choosing a # 37

alpha <- c(.5, 1, 1.2, 2, 5); beta <- alpha
par (mfrow=c(5,5)) # Formats 5 x 5 matrix of plots
x <- seq(.001,.999,.001)
for (i in 1:5)
{
for (j in 1:5)
{
top <- .2 +1.2 * max(dbeta(c(.05,.2,.5,.8,.95),
alpha[j],betali]))
plot(x,dbeta(x,alphalil,betaljl),
type="1", ylim=c(0,top), xlab="", ylab="")
}
}

2. In Example 8.1.1, we require a prior distribution with E(7) ~ 0.55
and P{0.51 < 7 < 0.59} =~ 0.95. How might we find suitable param-
eters a and 8 for such a beta distributed prior?

(a)

For a beta distribution, the mean is 4 = a/(a + §), and the
variance is 02 = af/[(a + 8)%(a + B + 1)]. Also, for unimodal
and roughly symmetrical distributions on 7 the Empirical Rule
states that P{u — 20 < m < p+ 20} = 0.95. Use these facts to
find approximate values of & and § satisfying the requirements.

The following S-Plus script finds integer values of & and S that
may come close to satisfying the requirements, and then checks
to see how well they succeed.

alpha <- 1:2000 # Trial values of alpha
beta <- .818+*alpha # Corresponding values of beta

# Vector of probabilities for interval (.51, .59)
prob <- pbeta(.59, alpha, beta)
- pbeta(.51, alpha, beta)
prob.err <- abs(.95 - prob) # Errors for probabilities

Results: Target parameter values

.alpha <- alpha[prob.err==min(prob.err)]
.beta <- round(.818*t.alpha)

.alpha; t.beta

o o o B

®

Checking: Achieved mean and probability
a.mean <- t.alpha/(t.alpha + t.beta)
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a.mean
a.prob <- pbeta(.59, t.alpha, t.beta)

- pbeta(.51, t.alpha, t.beta)
a.prob

What assumptions about « are inherent in the script? Why do
we use S = 0.818«? What values of a and § are returned? For
integer values of the parameters, how close do we get to the
desired values of E(r) and P{0.51 < 7w < 0.59}7

(c¢) If the desired mean is 0.56 and the desired probability in the
interval (0,51,0.59) is 90%, what values of the parameters are
returned by a suitably modified script?

3. In Example 8.1.1, we require a prior distribution with E(7) ~ 0.55

and P{0.51 < m < 0.59} = 0.95. If we were willing to use nonbeta
priors, how might we find ones that meet these requirements?

(a) If we were willing to use a normal distribution, what parameters
# and o would satisfy the requirements?

(b) Suppose we were willing to use a density function in the shape of
an isosceles triangle. What equations for its sides would satisfy
the requirements?

{(c) Plot three priors on the same axes: the beta density of Example
8.1.1 and the results of parts (a) and (b). Do you think the
expert would object strongly to any of these probability models
of her feelings about the distribution of 7? (Use the method in
Example 8.2.1 to put several plots on the same axes. Experiment:
If v <- ¢(0,1,1,2,2,3) andw <- ¢(0,0,1,1,0,0), then
what does lines(v, w) add to an existing plot?)

4. Computational methods are often necessary if we multiply the kernels

of the prior and likelihood and then can’t recognize the result as the
kernel of a known distribution. This can occur, for example, when
we don’t use a conjugate prior. We illustrate several computational
methods using the polling situation of Examples 8.1.1 and 8.2.1 where
we seek to estimate the parameter .

To begin, suppose we know the beta prior p(w) (with @ = 330 and
B = 270) and the binomial likelihood p(z|r) (for z = 620 subjects
in favor out of n = 1000 responding). But we have not been clever
enough to notice the convenient beta form of the posterior p(rw|z).
We wish to compute the posterior estimate of centrality E(r|z) and
the posterior probability P{x > .6|z} of a “big margin” in favor of
the ballot proposition.

From the equation in (8.1), we have E(r|z) = f017rp(7r)p(x|7r) dm/D
and P(7 > 0.6|z) = fol.e p(m)p(z|7) dr/D, where the denominator is



