Survival Analysis

Let $T \geq 0$ have density function $f(t)$ and distribution function $F(t)$. The survival function $S(t)$ is

$$
S(t)=1-F(t)=P(T>t)
$$

and the hazard rate or hazard function $\lambda(t)$ is

$$
\lambda(t)=\frac{f(t)}{1-F(t)}
$$

interpreted as

$$
\lambda(t) \approx P(t<T<t+d t \mid T>t)=P(\text { expiring in the interval }(t, t+d t) \mid \text { survived past time } t)
$$

Integrating $\lambda(t)$ gives

$$
\begin{gathered}
\int_{0}^{t} \lambda(u) d u=-\log S(t) \\
\Rightarrow S(t)=e^{-\int_{0}^{t} \lambda(u) d u}
\end{gathered}
$$

Censoring

What distinguishes survival analysis from other fields of statistics is censoring. Vaguely speaking, a censored observation contains only partial information about the random variable of interest.
Let $T_{1}, T_{2}, \ldots, T_{n} \stackrel{i i d}{\sim} F(t)$.

Type I

Let t_{c} be a preassigned fixed number which we call the fixed censoring time. We observe Y_{1}, \ldots, Y_{n}

$$
Y_{i}= \begin{cases}T_{i} & \text { if } T_{i} \leq t_{c} \\ t_{c} & \text { if } T_{i}>t_{c}\end{cases}
$$

Type II

Let $r<n$ be fixed, and let $T_{(1)}<T_{(2)}<\ldots<T_{(n)}$ be the order statistics of $T_{1}, T_{2}, \ldots, T_{n}$. Observation ceases after the $r^{\text {th }}$ failure, so we can observe $T_{(1)}, T_{(2)}, \ldots, T_{(r)}$. The full observed sample is

$$
\begin{aligned}
Y_{(1)} & =T_{(1)} \\
Y_{(2)} & =T_{(2)} \\
& \vdots \\
Y_{(r)} & =T_{(r)} \\
Y_{(r+1)} & =T_{(r)} \\
& \vdots \\
Y_{(n)} & =T_{(r)}
\end{aligned}
$$

Type III (Random Censoring)

Let $C_{1}, C_{2}, \ldots, C_{n}$ be iid each with distribution function G. Each C_{i} is the censoring time associated with T_{i}. We can only observe $\left(Y_{1}, \delta_{1}\right),\left(Y_{2}, \delta_{2}\right), \ldots,\left(Y_{n}, \delta_{n}\right)$ where

$$
\begin{gathered}
Y_{i}=\min \left(T_{i}, C_{i}\right)=T_{i} \wedge C_{i} \\
\delta_{i}=I\left(T_{i} \leq C_{i}\right)= \begin{cases}1 & \text { if } T_{i} \leq c_{i}(\text { not censored }), \\
0 & \text { if } T_{i}>c_{i}(\text { censored })\end{cases}
\end{gathered}
$$

notice Y_{1}, \ldots, Y_{n} are iid with some distribution function H.

Example (p.185)

From February 1972 to February 1975, 29 severe vival hepatitis patients satisfied the admission criteria for a 16 week study of the effects of steroid therapy at the Stanford, Veterans Administration, and Santa Clara Valley Hospitals. These patients were randomized into either the steroid or control group. The survival times (in weeks) of the 14 patients in the steroid group were
$1,1,1,1+, 4+, 5,7,8,10,10+, 12+, 16+, 16+, 16+$.
Assume an exponential distribution $S(t)=e^{-\lambda t}$
a) Estimate λ by maximum likelihood and construct an approximate $95 \% \mathrm{CI}$ for λ.
b) Estimate $S(16)$ and construct an approximate 95% CI for $S(16)$.
c) Estimate the median survival time and construct an approximate $95 \% \mathrm{CI}$ for the median.

Solutions:

a) Assume random censoring, the pair $\left(y_{i}, \delta\right)$ has likelihood

$$
\begin{aligned}
L\left(y_{i}, \delta_{i}\right) & = \begin{cases}f\left(y_{i}\right) & \text { if } \delta_{i}=1 \text { (uncensored) } \\
S\left(y_{i}\right) & \text { if } \delta_{i}=0 \text { (censored) }\end{cases} \\
& =f\left(y_{i}\right)^{\delta_{i}} S\left(y_{i}\right)^{1-\delta_{i}}
\end{aligned}
$$

The likelihood for the full sample

$$
\begin{aligned}
L & =L\left(y_{1}, \ldots, y_{n} ; \delta_{1}, \ldots, \delta_{n}\right) \\
& =\prod_{i=1}^{n} L\left(y_{i}, \delta_{i}\right) \\
& =\left[\prod_{u} f\left(y_{i}\right)\right]\left[\prod_{c} S\left(y_{i}\right)\right] \\
& =\left[\lambda^{n_{u}} e^{-\lambda \sum_{u} t_{i}}\right]\left[e^{-\lambda \sum_{c} c_{i}}\right] \\
& =\lambda^{n_{u}} e^{-\lambda \sum_{i=1}^{n} y_{i}}
\end{aligned}
$$

$$
\log L=n_{u} \log \lambda-\lambda \sum_{i=1}^{n} y_{i}
$$

$$
\frac{\partial}{\partial \lambda} \log L=\frac{n_{u}}{\lambda}-\sum_{i=1}^{n} y_{i}
$$

Setting $\frac{\partial}{\partial \lambda} \log L=0$ gives $\quad \hat{\lambda}=\frac{n_{u}}{\sum_{i=1}^{n} y_{i}}$

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \lambda^{2}} \log L & =-\frac{n_{u}}{\lambda^{2}} \\
I(\lambda) & =\frac{n_{u}}{\lambda^{2}}
\end{aligned}
$$

So

$$
\frac{\hat{\lambda}-\lambda}{\sqrt{\frac{\lambda^{2}}{n_{u}}}} \xrightarrow{d} N(0,1)
$$

Note that the normality approximation can be improved by transforming the estimate. By the δ-method,

$$
\hat{\lambda} \xrightarrow{d} N\left(\lambda, \frac{\lambda^{2}}{n_{u}}\right)
$$

then

$$
\log \hat{\lambda} \xrightarrow{d} N\left(\log \lambda, \frac{1}{n_{u}}\right)
$$

Notice that $1 / n_{u}$, the asymptotic variance of $\log \hat{\lambda}$, does not depend on the unknown parameter λ. It is an empirical fact that transforming an estimate to remove the dependence of the variance on the unknown parameter tends to improve the convergence to normality by reducing the skewness.

$$
\log \hat{\lambda} \xrightarrow{d} N\left(\log \lambda, \frac{1}{n_{u}}\right)
$$

The 95\% CI becomes

$$
\begin{gathered}
e^{\log \hat{\lambda} \pm \mathrm{z}_{\alpha} / \sqrt{n_{u}}} \\
\left(\hat{\lambda} e^{-\mathrm{z}_{\alpha} / \sqrt{n_{u}}}, \hat{\lambda} e^{\mathrm{z}_{\alpha} / \sqrt{n_{u}}}\right) \\
(0.031,0.136)
\end{gathered}
$$

b) $\widehat{S(16)}=e^{-\hat{\lambda}(16)}$
95% CI for $S(16)$ is

$$
\left(e^{-0.136(16)}, e^{-0.031(16)}\right)
$$

$(0.113,0.609)$
c) $\hat{t}_{\text {med }}=\log 2 / \hat{\lambda}=10.69$
95% CI for the median is

$$
\left(\frac{\log 2}{0.136}, \frac{\log 2}{0.031}\right)
$$

(5.097, 22.36)

Reference:
Miller Jr., Rupert G., Survival Analysis, Wiley, 1981.

