Survey Sampling

Summary of Ch. 7

Def: Simple Random Sampling
Each particular sample of size n has the same probability of occurrence; that is each of the $\binom{N}{n}$ possible samples of size n taken without replacement has the same probability.

Remark: Any statistic computed from a random sample is a random variable and has an associated sampling distribution.

The sampling distribution of \bar{X} determines how accurately an \bar{x} estimates μ. Roughly specking, the more tightly the sampling distribution is centered around μ, the better the estimate.

CLT: $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$

As a measure of the center of the sampling distribution we use $E[\bar{X}]=\mu$ and as a measure of the dispersion of the sampling distribution we will use $S D(\bar{X})=\sigma / \sqrt{n}$.

Thm A: With SRS $E[\bar{X}]=\mu$.
So \bar{X} is an unbiased estimator of μ.
Lemma B: With SRS, without replacement

$$
\begin{equation*}
\operatorname{Cov}\left(X_{i}, X_{j}\right)=-\frac{\sigma^{2}}{N-1} \quad i \neq j \tag{1}
\end{equation*}
$$

Thm B:

$$
\begin{align*}
\operatorname{Var}(\bar{X}) & =\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) \tag{2}\\
& =\frac{\sigma^{2}}{n}\left(1-\frac{n-1}{N-1}\right) \tag{3}\\
& =\frac{\sigma^{2}}{n}(\text { f.p.c. }) \tag{4}
\end{align*}
$$

Where f.p.c. is the finite population correction.
So if N is large, then $\operatorname{Var}(\bar{X}) \approx \sigma^{2} / n$.
Estimation of the Population Variance σ^{2}

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \tag{5}
\end{equation*}
$$

a biased estimator.

Thm:

$$
\begin{equation*}
E\left(\hat{\sigma}^{2}\right)=\sigma^{2}\left(\frac{n-1}{n}\right)\left(\frac{N}{N-1}\right) \tag{6}
\end{equation*}
$$

Cor: An unbiased estimate of $\operatorname{Var}(\bar{X})$ is

$$
\begin{align*}
s_{\bar{X}}^{2} & =\frac{\hat{\sigma}^{2}}{n}\left(\frac{n-1}{n}\right)\left(\frac{N-1}{N}\right)\left(\frac{N-n}{N-1}\right) \tag{7}\\
& =\frac{s^{2}}{n}\left(1-\frac{n}{N}\right) \tag{8}
\end{align*}
$$

If N is large then $s_{\bar{X}}^{2} \approx s^{2} / n$.
In practice we disregard the finiteness of the population and assume $n \ll N$. This implies independence in the sampling and

$$
\begin{equation*}
\operatorname{Cov}\left(X_{i}, X_{j}\right) \approx 0 \tag{9}
\end{equation*}
$$

CLT: Normal Approximation to the Sampling Distribution of \bar{X}.

$$
\begin{equation*}
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \tag{10}
\end{equation*}
$$

The spread of the sampling distribution and therefore the precision of \bar{X} are determined by the sample size n and not by the populations size N.

Confidence Intervals:

$100(1-\alpha) \%$ C.I. for μ, large $n \geq 30$

$$
\begin{equation*}
\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \tag{11}
\end{equation*}
$$

$100(1-\alpha) \%$ C.I. for μ, small $n<30$

$$
\begin{equation*}
\bar{x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}} \tag{12}
\end{equation*}
$$

$100(1-\alpha) \%$ C.I. for p, large n

$$
\begin{equation*}
\hat{p} \pm Z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p}}{n}} \tag{13}
\end{equation*}
$$

Inference Procedures

Point Estimation

Assuming there is a population with parameter μ a simple random sample (SRS) is taken to produce a sample of size $n, x_{1}, x_{2}, \ldots, x_{n}$. From the sample we calculate the sample mean \bar{x} as an unbiased estimate of μ.

Interval Estimation

Starting before the data from a SRS, $X_{1}, X_{2}, \ldots, X_{n}$, is collected from a population with unknown mean μ and known standard deviation σ^{2}, a $100(1-\alpha) \%$ confidence interval is a random interval.

$$
\begin{aligned}
P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right) & =1-\alpha \\
P\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right) & =1-\alpha \\
P\left(\mu-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \bar{X} \leq \mu+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) & =1-\alpha \\
P\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) & =1-\alpha
\end{aligned}
$$

Since \bar{X} is a random variable the endpoints of the last interval are random.
So before we collect our data the confidence interval

$$
\begin{equation*}
\left[\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right] \tag{14}
\end{equation*}
$$

has a 95% probability of including μ. After we collect our data, the confidence interval

$$
\begin{equation*}
\left[\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right] \tag{15}
\end{equation*}
$$

can be interpreted as follows:
"We are $100(1-\alpha) \%$ confident that our interval includes the population mean μ."
Note: We do not use the word probability when discussing a single confidence interval after it has been computed. A single interval either includes μ or it does not, we do not know.

Starting before the data from a SRS, $X_{1}, X_{2}, \ldots, X_{n}$, is collected from a population with unknown mean μ and unknown standard deviation σ^{2}, a $100(1-\alpha) \%$ confidence interval is a random interval.

$$
\begin{aligned}
P\left(-t_{\alpha / 2} \leq T \leq t_{\alpha / 2}\right) & =1-\alpha \\
P\left(-t_{\alpha / 2} \leq \frac{\bar{X}-\mu}{s / \sqrt{n}} \leq t_{\alpha / 2}\right) & =1-\alpha \\
P\left(\mu-t_{\alpha / 2} \frac{s}{\sqrt{n}} \leq \bar{X} \leq \mu+t_{\alpha / 2} \frac{s}{\sqrt{n}}\right) & =1-\alpha \\
P\left(\bar{X}-t_{\alpha / 2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{\alpha / 2} \frac{s}{\sqrt{n}}\right) & =1-\alpha
\end{aligned}
$$

So the confidence interval for μ when σ^{2} is unknow is

$$
\begin{equation*}
\left[\bar{x}-t_{\alpha / 2} \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2} \frac{s}{\sqrt{n}}\right] \tag{16}
\end{equation*}
$$

Aside: Sample size calculation. "Forethought in Statistics."
Find the sample size n needed to have a margin-or-error of .03 with 95% confidence when estimating the population proportion π.

The $100(1-\alpha) \%$ confidence interval for π.

$$
\begin{equation*}
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{17}
\end{equation*}
$$

So

$$
\begin{equation*}
z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=.03 \tag{18}
\end{equation*}
$$

A conservative estimate of π is to let $\hat{p}=0.5$.

$$
\begin{aligned}
1.96 \sqrt{\frac{(.5)^{2}}{n}} & =.03 \\
{\left[\frac{(1.96)\left(.50^{2}\right.}{.03}\right]^{2} } & =n \\
n & =1067
\end{aligned}
$$

Hypothesis Testing

$$
\begin{aligned}
H_{0}: \mu & =\mu_{0} \\
H_{1}: \mu & \neq \mu_{0}
\end{aligned}
$$

For a $\operatorname{SRS} X_{1}, X_{2}, \ldots, X_{n}$ then

$$
\begin{equation*}
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1) \tag{19}
\end{equation*}
$$

Therefore we reject H_{0} is Z falls in the tails of the distribution.

