Survey Sampling

Summary of Ch. 7

Def: Simple Random Sampling

Each particular sample of size n has the same probability of occurrence; that is each of the $\binom{N}{n}$ possible samples of size n taken without replacement has the same probability.

<u>Remark</u>: Any statistic computed from a random sample is a random variable and has an associated sampling distribution.

The sampling distribution of \bar{X} determines how accurately an \bar{x} estimates μ . Roughly specking, the more tightly the sampling distribution is centered around μ , the better the estimate.

CLT:
$$\bar{X} \sim N\left(\mu, \sigma^2/n\right)$$

As a measure of the center of the sampling distribution we use $E[\bar{X}] = \mu$ and as a measure of the dispersion of the sampling distribution we will use $SD(\bar{X}) = \sigma/\sqrt{n}$.

<u>Thm A:</u> With SRS $E[\bar{X}] = \mu$.

So \overline{X} is an unbiased estimator of μ .

.

Lemma B: With SRS, without replacement

$$Cov(X_i, X_j) = -\frac{\sigma^2}{N-1} \quad i \neq j$$
(1)

Thm B:

$$Var(\bar{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1}\right)$$
(2)

$$= \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right) \tag{3}$$

$$= \frac{\sigma^2}{n} (f.p.c.) \tag{4}$$

Where f.p.c. is the finite population correction.

So if N is large, then $Var(\bar{X}) \approx \sigma^2/n$.

Estimation of the Population Variance σ^2

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \tag{5}$$

a biased estimator.

Thm:

$$E(\hat{\sigma}^2) = \sigma^2 \left(\frac{n-1}{n}\right) \left(\frac{N}{N-1}\right) \tag{6}$$

<u>**Cor:**</u> An unbiased estimate of $Var(\bar{X})$ is

$$s_{\bar{X}}^2 = \frac{\hat{\sigma}^2}{n} \left(\frac{n-1}{n}\right) \left(\frac{N-1}{N}\right) \left(\frac{N-n}{N-1}\right) \tag{7}$$

$$= \frac{s^2}{n} \left(1 - \frac{n}{N} \right) \tag{8}$$

If N is large then $s_{\bar{X}}^2 \approx s^2/n$.

In practice we disregard the finiteness of the population and assume $n \ll N$. This implies independence in the sampling and

$$Cov(X_i, X_j) \approx 0 \tag{9}$$

<u>CLT</u>: Normal Approximation to the Sampling Distribution of \bar{X} .

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \tag{10}$$

The spread of the sampling distribution and therefore the precision of \bar{X} are determined by the sample size n and not by the populations size N.

Confidence Intervals:

 $100(1 - \alpha)\%$ C.I. for μ , large $n \ge 30$

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \tag{11}$$

 $100(1 - \alpha)\%$ C.I. for μ , small n < 30

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} \tag{12}$$

 $100(1-\alpha)\%$ C.I. for p, large n

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{13}$$

Inference Procedures

Point Estimation

Assuming there is a population with parameter μ a simple random sample (SRS) is taken to produce a sample of size $n, x_1, x_2, ..., x_n$. From the sample we calculate the sample mean \bar{x} as an unbiased estimate of μ .

Interval Estimation

Starting before the data from a SRS, $X_1, X_2, ..., X_n$, is collected from a population with unknown mean μ and known standard deviation σ^2 , a $100(1 - \alpha)\%$ confidence interval is a random interval.

$$P\left(-z_{\alpha/2} \le Z \le z_{\alpha/2}\right) = 1 - \alpha$$
$$P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$
$$P\left(\mu - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$
$$P\left(\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Since \bar{X} is a random variable the endpoints of the last interval are random.

So before we collect our data the confidence interval

$$\left[\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right] \tag{14}$$

has a 95% probability of including $\mu.$ After we collect our data, the confidence interval

$$\left[\bar{x} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right] \tag{15}$$

can be interpreted as follows:

"We are $100(1-\alpha)$ % confident that our interval includes the population mean μ ."

Note: We do not use the word probability when discussing a single confidence interval after it has been computed. A single interval either includes μ or it does not, we do not know.

Starting before the data from a SRS, $X_1, X_2, ..., X_n$, is collected from a population with unknown mean μ and unknown standard deviation σ^2 , a $100(1 - \alpha)\%$ confidence interval is a random interval.

$$P\left(-t_{\alpha/2} \le T \le t_{\alpha/2}\right) = 1 - \alpha$$
$$P\left(-t_{\alpha/2} \le \frac{\bar{X} - \mu}{s/\sqrt{n}} \le t_{\alpha/2}\right) = 1 - \alpha$$
$$P\left(\mu - t_{\alpha/2}\frac{s}{\sqrt{n}} \le \bar{X} \le \mu + t_{\alpha/2}\frac{s}{\sqrt{n}}\right) = 1 - \alpha$$
$$P\left(\bar{X} - t_{\alpha/2}\frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\alpha/2}\frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

So the confidence interval for μ when σ^2 is unknow is

$$\left[\bar{x} - t_{\alpha/2}\frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2}\frac{s}{\sqrt{n}}\right] \tag{16}$$

Aside: Sample size calculation. "Forethought in Statistics."

Find the sample size n needed to have a margin-or-error of .03 with 95% confidence when estimating the population proportion π .

The $100(1-\alpha)\%$ confidence interval for π .

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{17}$$

 So

$$z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = .03$$
 (18)

A conservative estimate of π is to let $\hat{p} = 0.5$.

$$1.96\sqrt{\frac{(.5)^2}{n}} = .03$$
$$\left[\frac{(1.96)(.50^2}{.03}\right]^2 = n$$
$$n = 1067$$

Hypothesis Testing

$$\begin{array}{rcl} H_0: \mu & = & \mu_0 \\ H_1: \mu & \neq & \mu_0 \end{array}$$

For a SRS $X_1, X_2, ..., X_n$ then

$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1) \tag{19}$$

Therefore we reject H_0 is Z falls in the tails of the distribution.