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Large Sample Theory for MLEs

Introduction

Consider the following:

• i.i.d. sample X1, X2, ..., Xn

• one-dimensional paramter θ with l(θ) =
∑n

i=1 log(f(xi|θ)
• the true value of θ is θ0

Thm A: Under appropriate smoothness conditions on f , the MLE of θ from an i.i.d. sample is consistent,
i.e.,

θ̂
p−→ θ0, n →∞. (1)

Proof: (The idea)

First, think of the transformed variable logf(X|θ) and consider logf(X1|θ), logf(X2|θ), ..., logf(Xn|θ) as a
random sample. So its mean is

1
n

n∑

i=1

logf(Xi|θ) p−→ Eθ0 [logf(Xi|θ)] n →∞. (2)

The subscript on θ, θ0, is to identify the true unknown value of θ.

With some imagination (or doing Calculus) we can guess the maximum of the righthand side should be at
θ0 since the convergence says that the lefthand side and the righthand side will be close for large n.

Lemma A: Define I(θ), Fisher’s Information, by

I(θ) = E

[
d

dθ
logf(X|θ)

]2

. (3)

Under the appropriate smoothness conditions on f , I(θ) may be represented as

I(θ) = −E

[
d2

dθ2
logf(X|θ)

]
. (4)

Proof:

First recall that for any density funtion

∫
f(x|θ)dx = 1 (5)

and so

d

dθ

∫
f(x|θ)dx = 0. (6)
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Note that since

d

dx
log(g(x)) =

d
dxg(x)
g(x)

, (7)

then

d

dθ
f(x|θ) =

[
d

dθ
logf(x|θ)

]
f(x|θ). (8)

So

0 =
d

dθ

∫
f(x|θ)dx

=
∫

d

dθ
f(x|θ)dx

=
∫ [

d

dθ
logf(x|θ)

]
f(x|θ)dx

The moving of the derivative inside the integral takes some math. Now take the second derivative.

0 =
d

dθ

∫ [
d

dθ
logf(x|θ)

]
f(x|θ)dx

=
∫ [

d2

dθ2
logf(x|θ)

]
f(x|θ)dx +

∫ [
d

dθ
logf(x|θ)

]
d

dθ
f(x|θ)dx

=
∫ [

d2

dθ2
logf(x|θ)

]
f(x|θ)dx +

∫ [
d

dθ
logf(x|θ)

]2

f(x|θ)dx

= E

[
d2

dθ2
logf(X|θ)

]
+ E

[
d

dθ
logf(X|θ)

]2

.

Remarks about Fisher’s Information

For the one-parameter model f(x|θ) the Fisher Information I(θ) is the fundamental measure of the “infor-
mation” an observation X carries about θ.

E

[
d2

dθ2
logf(X|θ)

]
= −E

[
d

dθ
logf(X|θ)

]2

. (9)

1. IX(θ) is best thought of in relative terms, i.e., X is more informative about θ than Y if IX(θ) > IY (θ).

2. The more information that X contains about θ, the larger IX(θ) should be. If X = θ with probability
one, then we would like to have IX(θ) = ∞.

3. If X1, X2, ..., Xn i.i.d. Fθ, then
IX(θ) = nIX(θ) (10)

where X = (X1, X2, ..., Xn).
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The information of n X’s is n times the information from one X and as n →∞, the information goes to ∞,
and is eventually perfect.

Proof:

IX(θ) = −E

[
d2

dθ2
logf(X1, X2, ..., Xn|θ)

]

= −E

[
d2

dθ2
log

n∏

i=1

f(Xi|θ)
]

= −E

[
d2

dθ2

n∑

i=1

logf(Xi|θ)
]

=
n∑

i=1

[
−E

[
d2

dθ2
logf(Xi|θ)

]]

=
n∑

i=1

IX(θ)

= nIX(θ)

The large sample distribution of an MLE is approximately normal with mean θ0 and variance 1
nI(θ0)

. This
implies that the MLE is asymptotically unbiased. It also implies that the variance of the limiting normal
distribution has the asymptotic variance of the MLE.

Thm B: Under the smoothness conditions of f , the probability distribution of

√
nI(θ0)(θ̂ − θ0) (11)

tends to a standard normal distribution.

Proof:

Use the W.L.L.N., the C.L.T. and Lemma A.

So we have

θ̂ ∼ N

(
θ0,

1
nI(θ0)

)
(12)

and approximately

θ̂ ∼ N

(
θ0,

1

nI(θ̂)

)
(13)

from which we can produce an approximate 100(1− α) confidence interval for θ

θ̂ ± zα/2
1√

nI(θ̂)
(14)
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Notes about the smoothness conditions

The true parameter value, θ0, is required to be an interior point of the set of all parameter values.

It is also required that the support of the density f(x|θ) does not depend of θ.

Final notes

The asymptotic variance of the MLE θ̂ is

1
nI(θ0)

= − 1
E

[
d2

dθ2 l(θ)
] . (15)


