
Irregular Maximum Likelihood Estimation 
 

We look at several examples in which a MLE is not found by taking derivatives and the usual 
large-sample theory for MLEs is not applicable. 
 

Example 1:  X1, X2, ..., Xn is a Random Sample from UNIF(–θ, θ ). 
     L(θ) = (1/2θ)n,  for –θ ≤ x1, ..., xn ≤ θ 
             = 0,   otherwise 
Look at the condition  –θ ≤ x1, ..., xn ≤ θ  to see what it says about restrictions on θ in terms of data. 
–θ ≤ x1, ..., xn ≤ θ  ⇒  x(1) ≥ –θ  and  x(n) ≤ θ  ⇒  –x(1) ≤ θ  and  x(n) ≤ θ 
Denote Y = max{|x1|, |x2|, ..., |xn|}.  Then the condition is equivalent to θ ≥ Y. 
     L(θ) = (1/2θ)n,   for θ ≥ Y, 
      = 0,   otherwise 
Maximum value of L(θ) occurs where θ is as small as possible. So MLE of θ is Y. 
 

Make a graph for n = 5.  Use data from UNIF(–2, 2) for an illustration. 
n = 5;  x = runif(n, -2, 2);  y = max(abs(x)) 
theta = seq(0, 5, by=.01);  L = (2*theta)^-n;  L[theta < y] = 0 
plot(theta, L, type="l", lwd=2) 
abline(v = 0, col="darkgreen"); abline(h = 0, col="darkgreen") 
x;  abs(x);  y 
> x;  abs(x);  y 
[1]  0.2994767  1.1443827 -1.6977629  0.2554094 -0.9491573 
[1] 0.2994767 1.1443827 1.6977629 0.2554094 0.9491573 

[1] 1.697763  # MLE  



 
Properties of this MLE.  Use simulation to see how good the MLE is; compare MLE with MME. 
Facts: MLE = Y is biased (always too small).  That is, E(Y) < θ.   But U = [(n + 1)/n]Y  is unbiased. 
Based on second moments,  MME is Q = [3 Σ Xi

2/n]1/2.  Also biased, because of taking square root. 



Among unbiased estimators it is reasonable to use the variance as a criterion of 'goodness,' picking 
the estimator with smallest variance as best. (In simulation we use SD to preserve units/scale.) 
A reasonable way to compare biased estimators is 'mean square error': for example, MSEY = E[(Y – θ)2]. 
MSE = Variance + (Bias)2, so for unbiased estimators MSE and Variance are the same. 
We explore, using simulation with n = 12 and θ = 10. 
 

m = 100000; n = 25;  th = 10 
DTA = matrix(runif(m*n, -th, th), nrow=m)    # m samples, each with n obs. 
y = apply(abs(DTA), 1, max);  yu = ((n+1)/n)*y  # y is vector of m MLEs 
q = sqrt(3*rowMeans(DTA^2))                  # q is vector on m MMEs 
y.desc = c(mean(y),  sd(y),  sqrt(mean((y-th)^2))) 
yu.desc = c(mean(yu),  sd(yu),  sqrt(mean((yu-th)^2)))  # Sim. E, SD √MSE 
q.desc = c(mean(q),  sd(q),  sqrt(mean((q-th)^2))) 
round(rbind(y.desc, yu.desc, q.desc), 3) 
 

lw = min(y, yu, qu);  up = max(y, yu, qu)    # to put hist's in same int. 
par(mfrow=c(3,1))                            # 3 graphs on a 'page' 
  hist(y, prob=T, xlim=c(lw, up), col="wheat")    # dist'n of MLEs 
  hist(yu, prob=T, xlim=c(lw, up), col="wheat")   # dist'n of unb. MLEs   
  hist(q, prob=T, xlim=c(lw, up), col="wheat")    # dist'n of MMEs 
par(mfrow=c(1,1)) 
 
> round(rbind(y.desc, yu.desc, q.desc), 3) 
             E    SD  √MSE 
y.desc   9.613 0.371 0.535 
yu.desc  9.998 0.385 0.385  # lowest sqrt(mse)  Var(Yunb) = MSE(Yunb) 
q.desc   9.958 0.903 0.904  # bias is very small 



 
Distribution of Y does not converge to normal with increasing n.



Example 2:  X1, X2, ..., Xn  is a Random Sample from UNIF(µ  – θ0 ,  µ + θ0 ),  where θ0 is known. 
 

     L(µ) = (1/2θ0)n, for µ – θ0 < x1, ..., xn < µ + θ0 
             = 0,   otherwise 
Look at µ – θ0 < x1, ..., xn < µ + θ0  to see what it says about restrictions on θ in terms of data. 
µ – θ0 < x1, ..., xn < µ + θ0  ⇒  x(1) > µ – θ0  and  x(n) < µ + θ0  ⇒  x(n) – θ0 < µ < x(n) + θ0 
 

Then the likelihood function becomes a constant (no µ) over the interval  (x(n) – θ0,  x(n) + θ0). 
     L(µ) = (1/2n)n,   for x(n) – θ0 < µ < x(n) + θ0, 
      = 0,   otherwise 
 

The MLE is not unique because L(µ) has its maximum value anywhere in  (x(n) – θ0,  x(n) + θ0). 
 

Make a graph for n = 5.  Let θ0 = 3.  Use data from  UNIF(1 –3 = –2,  1 + 3 = 4)  for an illustration. 
n = 5;  x = runif(n, -2, 4);  x.min = min(x);  x.max = max(x) 
mu = seq(-3, 5, by=.01);  L = (mu^0*2*3)^-n; L  # trick so L is 'fcn' of mu 
L[(mu < x.max-3)|(mu > x.min+3)] = 0  # set to 0 outside interval 
plot(mu, L, type="l", lwd=2) 
abline(v = 0, col="darkgreen"); abline(h = 0, col="darkgreen") 
x; x.min; x.max; x.max-3; x.min+3 
 

> x; x.min; x.max; x.max-3; x.min+3 
[1]  0.6786577  1.3466360 -1.2723000  2.5639691  1.8075686 
[1] -1.2723 
[1] 2.563969 
[1] -0.4360309  # lower end of interval of MLEs 
[1] 1.7277      # upper end of interval of MLEs  Interval includes µ = 1. 



 



Properties of this MLE.  Because the MLE is not unique, we try using the midpoint of the interval 
of possible values. This is the average of the max and the min, usually called the midrange. 
The interval of MLEs is a 100% confidence interval for µ.  (You don't see many useful 100% CIs!) 
The program (θ0 = 3 and n = 25) shows that the average length of this CI is about 0.46.  
The MME is the sample mean. Both the MLE and the MME are unbiased.  
 

m = 100000; n = 25;  mu = 1;  th.0 = 3. 
DTA = matrix(runif(m*n, mu-th.0, mu+th.0), nrow=m) 
mx = apply(DTA, 1, max); mn = apply(DTA, 1, min) 
mr = (mx + mn)/2;  len.int = mn+th.0 - mx+th.0    # midrange (MLE) 
mme = rowMeans(DTA)                               # sample mean (MME) 
mr.desc = c(mean(mr),  sd(mr),  sqrt(mean((mr-mu)^2))) 
mme.desc = c(mean(mme),  sd(mme),  sqrt(mean((mme-mu)^2))) 
round(rbind(mr.desc, mme.desc), 4) 
mean(len.int); mean((mu < mn+th.0) & (mu > mx-th.0)) 
 

lw = min(mr,mme);  up = max(mr,mme) 
par(mfrow=c(2,1)) 
  hist(mr, prob=T, xlim=c(lw, up), col="wheat") 
  hist(mme, prob=T, xlim=c(lw, up), col="wheat") 
par(mfrow=c(1,1)) 
 
> round(rbind(mr.desc, mme.desc), 4) 
              E     SD   √MSE 
mr.desc  0.9996 0.1599 0.1599 
mme.desc 1.0001 0.3458 0.3458 
> mean(len.int); mean((mu < mn+th.0) & (mu > mx-th.0)) 
[1] 0.4616141   # Length of MLE interval 
[1] 1           # MLE interval is 100% CI 



 
The distribution of the midrange does not converge to normal.



Example 3: X1, X2, ..., Xn is a Random Sample the two-parameter exponential distribution EXP(θ, η). 
 

The density function is  f(x | θ, η) = (1/θ) exp[–(x – η)/θ],  for x ≥ η  (and 0 otherwise). 
Estimation of η is irregular, but estimation of θ is standard. Begin by estimating η for fixed θ = θ0. 
We show that the MLE of the 'delay' η is x(1):  The likelihood function is  
 

   L(θ0, η) = (1/θ0)n exp[– Σi (xi – η)/θ0],  for  x1, ..., xn ≥ η or x(1) ≥ η 
          =  0,       otherwise. 
In the exponent,  Σi (xi – η) = Σi xi – nη,  where the sums run through  i = 1, ..., n. 
So  exp[– Σi (xi – η)/θ0] = exp[–(Σi xi)/θ0] × exp[(n/θ0)η]  and 
  L(θ0, η) = (1/θ0)n exp[–(Σi xi)/θ0] exp[(n/θ0)η], for η ≤ x(1) 

         =  0,        otherwise. 
For given data and fixed θ0, the factor in blue is constant. The factor exp[(n/θ0)η] increases 
with increasing η, until η reaches x(1), at which point it reaches its maximum. 
Make a graph for n = 5.  Use data from a population with θ0 = 1 and η = 2 for illustration. 
n = 5;  x = rexp(n, rate=1/1)+2;  x.min = min(x);  eta = seq(0,5,by=.01) 
L = (1/1)^n * exp(-sum(x)/1) * exp((5/1)*eta);  L[eta > x.min] = 0 
plot(eta, L, type="l", lwd=2) 
abline(v = 0, col="darkgreen"); abline(h = 0, col="darkgreen") 
x; x.min; (1/1)^n * exp(-sum(x)/1) 
 

> x; x.min; (1/1)^n * exp(-sum(x)/1) 
[1] 3.881629 4.025116 2.108118 2.916504 6.053171 
[1] 2.108118  # Minimum is MLE of η 
[1] 5.690098e-09   # y-intercept of curve (very small here, but NOT 0) 



 
Note: Once we have x(1) as the MLE of η, we can substitute that value into L to get L(θ).  
Setting the derivative L'(θ) = 0, we obtain the MLE of θ. 



Properties of the minimum of the data as an estimate of the delay η.   
For the usual one-parameter exponential, the sample mean and standard deviation both estimate θ. 
The SD is not influenced by the delay. So a possible alternative estimate of η might be 
the sample mean minus the SD. This alternative estimate is slightly biased (because SD is). 
In what follows, we take n = 10, θ0 = 1, η = 2. 
 

m = 100000; n = 10;  eta = 2;  th.0 = 1. 
DTA = matrix(rexp(m*n, 1)+2, nrow=m)             # I didn't do analysis. 
mn = apply(DTA, 1, min);  mnu = mn * 2*n/(2*n+1) #  I guess it's correct 
x.bar = rowMeans(DTA)                            #  factor to unbias MLE 
alt = x.bar - apply(DTA, 1, sd)   
mn.desc = c(mean(mn),  sd(mn),  sqrt(mean((mn-eta)^2))) 
mnu.desc = c(mean(mnu),  sd(mnu),  sqrt(mean((mnu-eta)^2))) 
alt.desc = c(mean(alt),  sd(alt),  sqrt(mean((alt-eta)^2))) 
round(rbind(mn.desc, mnu.desc, alt.desc), 4) 
 

lw = min(mn, mnu,alt);  up = max(mn, mnu ,alt) 
par(mfrow=c(3,1)) 
  hist(mn, prob=T, xlim=c(lw, up), col="wheat") 
  hist(mnu, prob=T, xlim=c(lw, up), col="wheat") 
  hist(alt, prob=T, xlim=c(lw, up), col="wheat") 
par(mfrow=c(1,1)) 
 

> round(rbind(mn.desc, mnu.desc, alt.desc), 4) 
              E     SD   √MSE 
mn.desc  2.0997 0.0999 0.1411 
mnu.desc 1.9997 0.0952 0.0952 
alt.desc 2.0757 0.2500 0.2612 
 

 
 Suppose we could 'unbias' the alternative estimate. 
 Then its SD and √MSE would both be about 0.25, 
 still much larger than 0.0952. 



 

 
Note: With n = 10: very long left tail for alternate method (occasional negative values). 


