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Why Permutation Tests are Superior to r and F Tests in

John LubBROOK and Hugh DUDLEY

A survey of 252 prospective, comparative studies reported
in five, frequently cited biomedical journals revealed that
experimental groups were constructed by randomization in
96% of cases and by random sampling in only 4%. The
median group sizes ranged from 4 to 12. In the randomized
studies in which measurements were made on a continuous
scale, comparisons of location were made by ¢ or F' tests
in 84% of cases, and by nonparametric, rank-order, tests in
the remainder. Because randomization rather than random
sampling is the norm in biomedical research and because
group sizes are usually small, exact permutation or random-
ization tests for differences in location should be preferred
to ¢t or F' tests.

KEY WORDS: Biomedical research; Fisher; Permutation
tests; Randomization tests.

1. INTRODUCTION

This review draws attention to a serious misunderstand-
ing between statisticians (especially teachers and consul-
tants) and biomedical scientists who employ statistical anal-
yses. It can be summed up as follows. Statisticians appear to
believe that biomedical researchers do most experiments by
taking random samples, and therefore recommend statisti-
cal procedures that are valid under the population model of
inference. In fact, randomization of a nonrandom sample,
not random sampling, is more usual. Given this, it is our
thesis that the randomization rather than population model
applies, and that the statistical procedures best adapted to
this model are those based on permutation.

2. DESIGN AND ANALYSIS OF
BIOMEDICAL EXPERIMENTS

We have reviewed the design of experiments in five,
frequently cited life-sciences journals in our own fields,
published on either side of the Atlantic (Tab. 1). Of 252
prospective and comparative studies, only 4% used random
sampling of defined populations to construct experimental
groups and all these employed inbred strains of animals.
In the remainder, experimental groups were constructed by
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randomization of nonrandom samples of humans, animals,
tissues, or cells to two or more conditions or treatments.
Furthermore, the group sizes used in the randomized stud-
ies were small. Overall, the median group size varied from
6 to 12 (Tab. 1). In 216 randomized-design experiments per-
formed in a laboratory setting, the median group size was
6 (range 2-77). In 25 randomized clinical trials, the median
size was 25 (range 4-345).

We also reviewed the statistical procedures used to test
for differences in location when measurements had been
made on a continuous scale (Tab. 2). In randomized-design
experiments, the results were analyzed by ¢ or F tests in
84% of cases. In the remainder, nonparametric tests based
on rank-order were used, with one exception. In the last case
the difference beween means was tested by permutation,
though the test was done incorrectly.

3. TWO MODELS OF STATISTICAL INFERENCE
3.1 The Population Model

Neyman and Pearson formally proposed this model in
1928. It assumes there has been random sampling of a popu-
lation or populations. Under it, the level of statistical signif-
icance (P) that results from applying a statistical test to the
results of an experiment corresponds to the frequency with
which the null hypothesis would be rejected in repeated
random samplings of those populations. Because it would
be inconvenient or impossible to sample real populations
repeatedly, it is stipulated that the sampling distribution
of those populations conforms to a theoretical frequency-
distribution (for instance, the ¢ or F distributions). Ney-
man and Pearson (1928) also formalized the concept of two
sources of error in statistical inference. The first (Type I)
refers to the risk of falsely rejecting the null hypothesis;
in ideal conditions, this coincides with the P value result-
ing from a test of that hypothesis. The second (Type II)
is false acceptance of the null hypothesis, which leads on
to the concept of the power of tests to reject the null hy-
pothesis and the influence of sample size in this context.
In a later article they also addressed the trade-off between
controlling Type I and Type II error rates, arguing in fa-
vor of the latter in scientific research (Neyman and Pearson
1933). However, in biomedical research we have a strong
preference for controlling Type I error, because the penalty
for false-positive inference may be the introduction of a
valueless new therapy. Neyman (1934) was also the first
to propose the use of confidence intervals as an alternative
to hypothesis-testing, a practice that has recently become
popular in clinical research.

The Neyman—Pearson population model of inference is
adopted, explicitly or implicitly, in almost every explana-
tory textbook on general statistics. Under it, statistical tests
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Table 1. Experimental Design and Group Sizes in Comparative Studies Published in Five Biomedical Journals in 1993—1994
Total no. Randomization Random sampling
articles No. studies Median group No. studies Median group
Journal (lab:clin ratio) (lab:clin ratio) size (range) (lab:clin ratio) size (range)
American Journal of 101 61 7 3 6
Physiology (Heart Circ. Physiol.) (95:6) (59:2) (3-36) (3:0) (4-10)
British Journal 92 76 6 3 9
of Pharmacology (92:0) (76:0) (3-77) (3:0) (4-13)
Circulation 107 50 6 3 8
Research (104:3) (49:1) (3-77) (8:0) (5-12)
Annals of 100 20 10 1 4
Surgery (22:78) (13:7) (2-38) (1:0)
British Journal 132 34 12 1 7
of Surgery (21:111) (19:15) (2-345) (1:0)

NOTES: Data on original articles from consecutive issues. Lab:clin ratio, ratio of articles on laboratory experiments versus clinical trials. Discrepancy between total number of articles reviewed and
those categorized as of randomized or random sampling design is accounted for by articles that fit neither classification because they were descriptive or retrospective.

that depend on sampling distributions such as the normal,
t, or I are valid.

3.2 The Randomization Model

In the early 1930s, R.A. Fisher proposed that randomiza-
tion should be the basis for experimental design and statis-
tical inference (Fisher 1936, 1971). The premise behind this
model is that a sample of experimental units, however ac-
quired, is divided randomly into two or more groups. These
are then exposed to different conditions or treatments. The
null hypothesis is merely that the conditions or treatments
have no differential effects on the groups with respect to a
selected statistic such as the mean. There is no reference to a
population and therefore no requirement that it should con-
form to a mathematically definable frequency distribution.
Instead, for each experiment the unique sampling distribu-
tion of the test statistic is compiled exactly by permutation.

The randomization model has had relatively few support-
ers. Kempthorne and Box have been strong advocates of it
(Kempthorne 1955; Box and Anderson 1955; Kempthorne
and Doerfler 1969; Box, Hunter, and Hunter 1978). Other
distinguished statisticians have described the model (for in-
stance, Welch 1937a; Scheffé 1959, p. 313; Lehmann 1975,
pp. 55-57), but they seem hesitant to recommend it be-
cause of the restrictive nature of inferences under it. Indeed,
a contemporary theoretical statistician wrote to one of us
(JL): “T do wonder, though, why one would call this infer-
ence?” (his emphasis). Of those who use statistical proce-
dures to analyze their experimental results, only a few have
been outspoken in favor of the randomization model (for
instance, Feinstein 1973; Edgington 1995; Ludbrook 1994;
Ludbrook and Dudley 1994).

3.3 The Two Models Compared
Under the population model, a statistical inference has

Table 2. Methods of Statistical Analysis Used for Continuous Data in Comparative Studies Published in Five Biomedical Journals in 1993—1994

Analytical procedures
Experimental Rank General
design Classical permutation permutation Total

American Journal of Physiology (Heart Circ Physiol)

Random sampling 3 0 0

Randomization 56 5 0 61
British Journal of Pharmacology

Random sampling 2 1 0 3

Randomization 65 8 0 73
Circulation Research

Random sampling 3 0 0 3

Randomization 48 1 0 49
Annals of Surgery

Random sampling 0 0 1 1

Randomization 15 2 0 17
British Journal of Surgery

Random sampling 0 1 0 1

Randomization 5 20 0 25
Total 197 38 1 236

NOTES: Classical tests: based on ¢ or F distributions. Rank permutation tests: Wilcoxon-Mann-Whitney, Wilcoxon matched pairs, Kruskal-Wallis, Friedman. General
permutation tests: based on permutation distribution of differences between means. Not included in the table are seven cases in which no analytical test was used.
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implications for the future even if these are unstated. If the
outcome of a ¢ or F' test under random sampling is P = .05,
it is implied that if repeated random samples of the same
size were taken from the same population(s), 19 out of 20
would yield a difference between sample means of the same
size or greater than that originally observed. But if P = .05
results from randomization and the application of a permu-
tation test, there is no statistical promise for the future. The
statistical inference refers only to the actual experiment that
has been performed and the P value indicates the probabil-
ity that the way in which this experiment turned out was
merely a matter of chance. However, this need not deter ex-
perimenters from inferring that their results are applicable
to similar patients, animals, tissues, or cells, though their
arguments must be verbal rather than statistical.

Though the notion of Type I error can be applied to in-
ferences under the randomization model, some of the other
elements of the population model cannot. For instance, the
relationship between power to reject the null hypothesis and
sample size is a continuous one under random sampling,
whereas it is discontinuous under randomization (see later).
And confidence intervals cannot be used as an alternative
to hypothesis-testing under the randomization model, for
there are no true parent populations to which they could be
referred.

3.4 A Hybrid Model

What if the sample that is subjected to randomization
were taken randomly from a defined population? In this
circumstance, it is reasonable to suppose that the statisti-
cal inference or confidence intervals could be extended to
refer to other hypothetical experiments in which the same
population was randomly sampled and then divided by ran-
domization into subsamples.

4. PERMUTATION TESTS

4.1 History

The first edition of R.A. Fisher’s The Design of Experi-
ments was published just over 60 years ago. Its popularity
can be judged from the fact that the eighth edition (1966)
was reprinted in 1971 and again in 1990 (Fisher 1971).
The book is nowadays read chiefly for its exposition of the
principles and practice of randomized experimental designs.
However, it also contains first descriptions of two tests of
significance that depend on permutation. One, Fisher’s exact
test for analyzing categorical data set out as a 2 x 2 table of
frequencies, has entered the mainstream of statistical prac-
tice. The other was a permutation test for the difference
between means. v

Fisher took Charles Darwin’s data on the height of cross-
and self-fertilized Zea mays plants and analyzed them by a
permutation test for the difference between the two means
(Fisher 1971, p. 30). This involved the compilation by hand
of the 32,768 possible permutations of the data, with the
proviso that the permutations be divided into groups of
the same size as those in the experiment. In 1726 of the
permutations the difference between the group means was

equal to or greater than that observed. The two-sided value
for P is thus 1,726/32,768 = .05267. He had earlier used
Student’s pooled-variance ¢ test to analyze the same data,
which gave P = .0497. His conclusion was that permutation
tests provide “the possibility of an independent check on
the more expeditious [classical] methods in common use”
(Fisher 1971, p. 45). He did confess, however, that “the one
flaw in Darwin’s procedure was the absence of randomisa-
tion” (Fisher 1971, p. 44). At about the same time, Eden
and Yates (1933) used permutation to analyze an agricul-
tural experiment based on a randomized-block design with
replicates. Their purpose was to defend analysis of variance
against charges that it is very sensitive to departures from
normality. Fisher’s z (now the F) statistic was permuted by
taking a random sample (n = 1,000) of the 248 possible
permutations of the data. From the close correspondence
between the permutation and theoretical distributions of F
they concluded that “the z test may safely be applied to
[skewed] data of this type.”

It appears that Fisher then lost interest in the permuta-
tion method for analyzing continuous data and he did not
mention it again in his publications or scientific correspon-
dence (Bennett 1990). Part of the reason may have been
the exhausting process of compiling permutations by hand,
so that as Bradley wrote 30 years later: “[permutation tests
were] little more than curiosities ... almost never quick ...
seldom practical, and often ... not even feasible” (Bradley
1968, p. 84).

There was, in addition, a theoretical difficulty in accept-
ing permutation tests. Fisher was often enigmatic in the
views he expressed about statistical inference. Neyman and
Pearson were not. Their theoretical expositions on inference
from random sampling were formal and precise, and their
population model of inference became widely accepted
from the mid-1930s onward. As a result, most of the further
theoretical and empirical development of permutation tests
was done, somewhat illogically, under the Neyman—Pearson
population model. Beginning with Pitman (1937), a number
of statisticians showed how the scope of permutation tests
could be extended beyond those envisaged by Fisher, Eden,
and Yates. Others suggested approximate versions of exact
permutation tests (for instance, Pitman 1937; Box and An-
derson 1955) or developed further Eden and Yates’s (1933)
notion of sampled permutation tests, sometimes called ran-
domization tests (see Edgington 1995; Manly 1997). There
have been a great many studies designed to confirm the
asymptotic, large-sample, equivalence of permutation and
classical tests (see Ludbrook 1994). Others have pointed
out discrepancies between permutation and classical tests
when population variances are unequal and especially when
samples are small (for instance, Boik 1987; Romano 1990).
For completeness, we refer also to the nonparametric tests
whose theoretical basis is the permutation of differences be-
tween mean-ranks, invented by Wilcoxon in 1945 as a way
of overcoming the computational difficulties of permuting
differences between means. It was later demonstrated that
if rank-order tests are used to test specifically for equality
of location, under the population model it is required that
the shapes and dispersions of the randomly sampled pop-
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ulations be identical (see Bradley 1968, p. 109; Ludbrook
1996). It should also be noted that the null hypothesis—
equality of mean-ranks—does not correspond to equality
of medians, because of the method of ranking employed in
these test procedures.

4.2 Principles

Lucid descriptions of how permutation tests are con-
ducted can be found in successive editions of the specialized
monographs by Edgington (1995) and Manly (1997), and in
Siegel and Castellan (1988) (see also Fig. 1). Their underly-
ing rationale is rarely mentioned in texts of general statis-
tics (a notable exception being that of Box et al. 1978). It is
referred to in texts on nonparametric statistics, though the
focus is usually on rank-order tests rather than on permu-
tation tests in general (exceptions are Bradley 1968; Siegel
and Castellan 1988). There have been occasional attempts
to explain permutation tests to biomedical investigators (for
instance, Feinstein 1973; Ludbrook 1994).

In the case of independent groups, these tests depend on
compiling all possible permutations of the values that result
from an experiment, provided the permutations are divided

50 o
40 H M
30

20

ABSOLUTE FREQUENCY OF OCCURRENCE
1
1
1
T

T T T T
-2.4 -1.6 -0.8 0.0 08 1.8 24

DIFFERENCE BETWEEN MEANS (MEAT - FISH)

Permutation no: 1 787* 788 789 780 791 792

Fish (F) 11.8 5.42 5.42 5.42 5.42 6.42 5.42
7.84 5.86 5.86 6.86 5.86 5.86 5.86
7.61 6.16 6.18 6.16 6.16 6.16 6.16
7.56 6.55  6.51 6.51 8.51 6.51 6.51
711 6.80 8.55 6.80 6.56 6.55 6.56
7.00 7.00 6.80 7.00 7.00 6.80 6.80
6.80 7.11 7.56 7.1 7.11 7.11 7.00

Meat (M) 5.42 6.51 7.00 665 680 7.00 7.11
5.86 7.56 7.1 756 7.56 7.56  7.56
6.16 7.61 7.61 7.61 7.61 7.61 7.61
.51 7.84 7.84 7.84 7.84 7.84 7.84
6.55 11.5 1.5 11.5 1.5 11.5 11.5

Difference

between means

(M-F) -1.82 1.79* 1.80 1.80 1.89 1.96 2.00

Figure 1. Outcome of Permutation Test for Difference Between

Group Means. Above: Permutation distribution of absolute frequency of
occurrence according to difference between means (meat eaters-fish
eaters). All possible permutations: 792. Filled columns: difference be-
tween means equals or exceeds observed value in either direction. Be-
low: Permutations of values in which difference between means (meat
eaters-fish eaters) is equal to or exceeds in either direction the observed
difference of 1.79 (indicated by *). Under the randomization model, the
two- sided probability that diet has a differential effect on plasma choles-
terol concentration is 7/792 = .0088.
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into sets of the same size as the randomized experimen-
tal groups. When repeated measurements are made on the
same set of experimental units, all possible interchanges of
the values attached to each experimental unit are compiled.
The null hypothesis is that there is no differential effect
of experimental treatments or conditions on the statistic of
interest. The probability attached to the null hypothesis is
then

Number of the same or more extreme outcomes as that observed

Total number of possible outcomes

The outcome can be defined in many different ways: for in-
stance, as the difference between arithmetic means, geomet-
ric means, medians, mid-ranges, mean-ranks, proportions,
or variances. In the case of multiple randomized groups, an
F-like statistic can be permuted.

One of the practical difficulties with exact permutation
tests is the number of permutations required. For instance,
for k£ independent groups of size n,, the general formula
for calculating the number of possible permutations is

(TLl +no+n3 -+ + nk)'/ (nl)'(nz)’(ng)' ce (nk)' .

For k repeated measurements on the same group of size n,
the general formula is £™. A little work with a handheld
calculator will show that with just two independent groups,
where n1 = ny = 15 the number of possible permutations is
about 1.5 x 108; and for two repeated measurements made
on a group of size n = 15 the number is 32,768.

Even with a fast microcomputer, compilation of the exact
permutation distribution may take too long. The solution is
to construct the distribution by taking a Monte Carlo ran-
dom sample from all the possible permutations, in much
the same way as Eden and Yates did by hand in 1933. The
result is a P value that is only marginally less exact and to
which confidence limits can be attached. The Monte Carlo
solution is sometimes called a randomization test (Edging-
ton 1995; Manly 1997).

The number of possible permutations is important in an-
other way. If it is < 20, then P < .05 can never be attained.
For two independent groups, this critical number of 20 per-
mutations is attained when n; = ns > 3, and for two related
groups when n > 5. Thus, though it is difficult to construct a
theoretical statement about power to reject the null hypoth-
esis under randomization, it is easy to arrive empirically at
minimum group sizes that will allow the null hypothesis to
be rejected at a chosen level of significance.

4.3 Example of a Permutation Test for the Difference
Between Means of Two Independent Groups

This example is a hypothetical one. Twelve men are re-
cruited from among those attending a fitness clinic and
asked to participate in an experiment to establish whether
eating fish (but not meat) results in lower plasma choles-
terol concentrations than eating meat (but not fish). The
subjects are randomly allocated to the fish-eating (n; = 7)
and meat-eating regimens (ny = 5). At the end of one year
their plasma cholesterol concentrations are measured. These



are:

Fish eaters: 5.42,5.86,6.16,6.55,6.80,7.00,7.11
Meat eaters: 6.51,7.56,7.61,7.84,11.50

An exact permutation test is performed to test whether
the treatments had a differential effect on plasma choles-
terol concentration. There are 792 possible permutations of
the data, which are set out as a frequency-histogram for the
differences between group means in Figure 1. The bimodal
and asymmetric shape of the permutation distribution bears
no resemblance to the symmetrical ¢ distribution. In seven
of these permutations the difference between group means
is equal to or exceeds in one or other direction the observed
difference of 1.79 (Fig. 1). This corresponds to a two-sided
value for P = 7/792 = .0088. Under the randomization
model, the experimenters can therefore reject the null hy-
pothesis with some confidence, and infer that diet did have
a differential effect on plasma cholesterol concentration in
their nonrandom sample of men. But they could only ex-
tend this inference to other men attending fitness clinics, or

_to men in general, by verbal argument.

4.4 Other Ways of Analyzing the Same Data Set

Most statisticians would very likely take a different ap-
proach and proceed under the population model, and our
survey certainly suggests that biomedical investigators and
their statistical advisors would do so (Tab. 2). They would
note the outlying value in the meat- eating group and con-
firm that it did not result from an error of measurement or
transcription. Given that the sample variance ratio is 7.16
and that the larger variance is associated with the smaller
sample, they would be wary of using the pooled-variance
t test because of the risk that the Type I error rate may
exceed that nominated. Some would use Welch’s (1937b)
separate-variance version of the ¢ test, which minimizes
this risk (Fligner and Policello 1981). Others might log-
transform the data before performing a ¢ or Welch test,
though this reduces the variance ratio only to 4.47. Biomed-
ical investigators—and surgical ones in particular (Tab. 2)—
appear to favor using the Wilcoxon-Mann—Whitney proce-
dure, though they do not appreciate the restrictions to its
use under the population model and the difficulty in inter-
preting the mean-rank as an index of location (see Sec. 4.1).

Table 3. Outcome of Tests of Significance on the Data From the Hypo-
thetical Experiment Comparing Plasma Cholesterol Concentrations After
Fish- or Meat-Eating

Untransformed values  Log-transformed values

Test procedure P P
Student’s t test .041 .029
Welch test .105 .070
Exact WMW test .030 .030
Exact permutation

test .009 .013

NOTES: For original values see text and Figure 1. Student’s t test: pooled variance
at df = 10. Welch test: separate variances, adjusted df. Exact WMW: Wilcoxon—
Mann-Whitney test by exact permutation. Exact Permutation Test: all 792 possible
permutations of differences between group means listed.

The outcome of these several approaches is in Table
3. Our main point is that there are marked discrepancies
between P values that result from permutation and those
from parametric tests. Though we have referred earlier to
the ample theoretical and empirical evidence that classi-
cal tests provide good large-sample approximations to the
corresponding permutation tests, it is clear that this need
not be so when group sizes are small. It should also be
noted that the two permutation tests give different out-
comes. The Wilcoxon—-Mann—Whitney test is unaffected by
log-transformation, because this does not alter the order of
the difference between mean ranks. It is also less sensitive
than the permutation test for a difference between group
means, because information is discarded when the original
values are transformed into ranks.

5. CONCLUSION

Randomized rather than random-sampling designs are
used in most comparative biomedical experiments. On the
basis of pure theory, statistical inferences from the experi-
ments are valid only under the randomization model of in-
ference. Why, then, do biomedical investigators not employ
exact or sampled permutation tests to analyze their results?

A trivial reason is that the editors of biomedical journals
might not understand permutation tests and their statistical
advisers might not accept the arguments we have put for-
ward. Our personal experience is that it is much easier to
get a manuscript published if one stays with classical tests
under the population model.

There is also an important practical point. There are
plenty of microcomputer statistical software packages with
which to perform classical or modified ¢ and F tests, but
a dearth of software for performing permutation tests for
differences between means. Those packages that we know
to be available are listed in Appendix A.

Because the sets of continuous data acquired by biomed-
ical investigators are rarely published, we cannot tell how
often their statistical inferences are seriously flawed. But
the small group sizes they use in their experiments (Tab. 1),
their propensity for employing nonparametric rank-order
tests if they have doubts that the assumptions for ¢ and F'
tests are fulfilled (Tab. 2), and the discrepancy between the
results of classical and permutation tests that can be demon-
strated in individual examples (Fig. 1), leads us to suspect
that the problem is not a trivial one.

Kempthorne (1955, p. 966) wrote: “When one consid-
ers the whole problem of experimental inference, that is
of tests of significance, estimation of treatment differences
and estimation of the errors of estimated differences, there
seems little point in the present state of knowledge in using
[a] method of inference other than randomization analy-
sis.” Those words summarize the substance of this review.
We hope that biomedical scientists, statistical teachers and
consultants, and the editors of biomedical journals and their
statistical advisors will take note of them.
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APPENDIX: MICROCOMPUTER SOFTWARE
FOR PERMUTATION TESTS

We are aware of only three (and a half) pieces of soft-
ware that cater for differences between means. Edging-
ton’s (1995) RANDIBM program provides exact permuta-
tion tests for the ¢ and F' statistics up to 30,000 permuta-
tions, and sampled permutation (randomization) tests there-
after. Manly’s (1997) RT 2.1 software provides a similar
range. The only fully commercial microcomputer software
package that we know of is STATXACT 3.0 for Windows
(Cytel Software Corp., Cambridge, MA). Its permutation
algorithm is very efficient (up to 6 x 105 permutations per
second). For large data sets, Monte Carlo sampled permu-
tation tests can be done and confidence intervals for P are
given. It caters for one-way designs with k groups, but for
only two related groups. SAS (SAS Institute Inc., Cary, NC)
offers permutation tests, but only for making multiple pair-
wise contrasts between means.

[Received June 1995. Revised March 1996.]
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