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Advances in computer technology have made a
new generation of computationally intensive
statistical methods available to applied statisticians.
One of the most important of these new methods is
the Gibbs sampler. Usually within a framework of
Bayesian inference, it uses computer simulations
and the convergence theory of discrete-time
Markov processes to obtain results that would be
difficult to obtain otherwise. [5, 12]

The purpose of this article is to show how
Gibbs sampling methods can be used to make
estimates of disease prevalence from medical
screening test data. We include examples for which
the theory can be understood at the undergraduate
level. In Sections 1-3 we cover some basic facts
about screening tests and establish notation needed
throughout. Sections 4 and 5 introduce a simple
Gibbs sampler and establish its relationship to a
two-state Markov Chain. The remaining sections
include the Bayesian context (Section 6), the
description (Section 8), and simulation results
(Section 9) of a more general Gibbs sampling
process.

-l 1. Diagnostic Tests

Suppose that international public health
officials want to determine the prevalence of a

Eric Suess joined the faculty at California State
University, Hayward in fall 1998 upon completion of his
Ph.D. thesis at the University of California, Davis.
Chris Fraser is a student in the MS program at CSU
Hayward. The concept of this paper grew out of a student
project funded by his grant from the CSU Hayward
Associated Students. Bruce Trumbo is an ASA Fellow
and the graduate advisor for the Statistics Department at
CSU Hayward.

ASA

Fraser, Suess, Trumbo

particular virus in donated blood at several sites
throughout the world. Also suppose that a relatively
inexpensive test is available to screen units of blood
for this virus—an ELISA test. (ELISA stands for
enzyme-linked immunosorbent assay. Specific ELISA
tests detect antibodies to particular viruses, such as
HLIV, various types of hepatitis, etc.) Accordingly, the
study will be based on the results of ELISA tests
performed on randomly chosen units of blood
donated at each place to be surveyed.

The proportion of ELISA tests indicating
presence of the virus is not the same as the
proportion of the sample actually contaminated
with it. The ELISA test is useful, but not perfect.

Sensitivity: During its development, this
ELISA test was performed on a large number of
blood samples known to have come from subjects
infected with the virus. Suppose that about 99% of
these showed a positive result. That is to say, the
ELISA test correctly detects the virus in 99% of
infected units of blood. In terms of random
variables and probabilities, we say that the
sensitivity of the test is

1 = P(positive test | has virus)

=P(T=1|D=1) = 99%.

Here T is a random variable that takes the
value 1 when a unit of blood shows a positive test,
and D is a random variable that takes the value 1
when the unit has the disease virus. (In this article
we often express probabilities as percentages.)

Specificity: On the other hand, consider a
group of units of blood known, from more costly,
more accurate procedures than ELISA, to be free of
the virus (D = Q). When administered to such units
of blood, the ELISA test was found to give negative
results (T = 0) for about 97% of them. That is, for
some reason, ELISA incorrectly gave an indication
of the virus in 3% of uncontaminated units of blood
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(called “false-positive” results). We say that the
specificity of the test is

6 = P(negative test | no virus)

= P(T=0|D=0) = 97%.

Hypothetical values: The particular numerical
values of n and @ that we have given above, and
continue to use throughout this article, are
reasonable, but hypothetical values.! (See [4] for a
discussion of sensitivity and specificity in several
kinds of screening tests.)

Later in this paper we give several hypothetical
prevalence values. In real life, actual prevalences
range widely depending on the population and the
disease. For example, in the US the prevalence of
HIV in the donated blood supply is now essentially
0. (Pre-donation questionnaires used by blood
banks tend to eliminate even donors likely to
produce false-positive results with highly sensitive
screening tests.) On the other hand, in clinical
applications, screening tests are sometimes used
where the prevalence of a disease exceeds 50%.

M 2. First Attempts to Estimate Prevalence

At one of the sites under study, suppose that
we estimate 7 = P(T=1) as t, the proportion of
positive tests in a sample. As we have seen in
Section 1, we cannot use ¢ directly as an estimate of
the prevalence 7 = P(D=1). But can we somehow
use t indirectly to find an estimate p of 7?

One proposed method is to use the fact that 7
and 1 are related by the equation

7= P(T=1) = P(D=1, T=1) + P(D=0, T=1)
= P(D=1)P(T=1ID=1) + P(D=0)P(T=1|D=0)
=N+ 7O,

where we write #* = 1 - mand 6* = 1 - 0 (and
similarly below for other Greek letters representing
probabilities). Here we have partitioned all positive
tests into true positives and false positives, applied
the law of total probability, and used the definition
of conditional probability. Solving this equation for
7 and replacing T by t, we obtain the estimate

p={(t-6%/(n- 6%).

For example, suppose that we have a sample of
N = 1000 units of blood and that 49 of them test
positive, that is, A = #(T=1) = 49. Then t = A/N =
0.049 = 4.9%, and

p=(4.9%-3%)(99% - 3%) = 1.98%.
The 95% confidence interval for 7 based on the
normal approximation is (3.56%, 6.24%), and the
corresponding 95% confidence interval for = is
(0.58%, 3.38%).

Unfortunately, this method sometimes gives
absurd estimates p of 7. For example, if we have a
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sample of N = 215 units of blood and five of them
test positive, then t = 2.3% and p = -0.73%. The
problem here is that we expect 3% of the tests to be
positive even if the prevalence is 0, but sampling
variation has given us a value of ¢ less than 3%. In
some applications, such estimates of prevalence that
stray into negative territory can be quite common
(see [8], pp. 130~132). If 7 is very near O, then p
will be negative about half the time. In different
circumstances, this method can give absurd
estimates of prevalence that exceed 100%.

B 3. Additional Conditional Information

One possible path towards a better way to
estimate the prevalence 7 of infection is to perform
a “gold standard” procedure on some of the units of
blood. In concept, a gold standard provides an
essentially 100% accurate determination as to
whether or not the virus is present in a unit, but at
a cost of administration that prevents its use on
every unit of blood.? (If such a gold standard were
inexpensive, why bother with imperfect ELISA tests
for screening?)

As a hypothetical example, suppose that the
unknown prevalence at a particular location is 7 =
2%. Then, from the formula for 7in Section 2,

T=1n+ T 6*

=(0.02)(0.99) + (0.98)(0.03) = 4.92%.
A common illustration of Bayes’ theorem in basic
probability texts is to compute

v=PD=1T=1) = 7 /7

=0.019870.0492 = 40.24%.
This quantity vy is called the predictive value of a
positive test. Similarly, we compute

0 =P(D=0[T=0) = 7*6 /7*

=0.9506 /(1 - 0.0492) = 99.98%,
the predictive value of a negative test.

Unless the prevalence of the virus is of
profoundly epidemic proportions at a particular
location, the actual number of units with ELISA-
positive tests found there may be small enough that
we could check them all against the gold standard.
Without knowing #, we could then estimate vy for
this site as #(T=1, D=1)/#(T=1); that is, the
proportion of the ELISA-positive units proved by
subsequent gold-standard procedures actually to
have the virus.

Although we would not ordinarily be able to
apply the gold standard to all units of blood that
tested ELISA-negative, we might be able to check
some of them against the gold standard to get an
estimate of & (if only to verify that 6 really is very
nearly 1, as would be the case if the prevalence is,
say, below 5%).
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If they were available, we shall see that reliable
estimates of the conditional probabilities y and &
would provide the basis for an improved estimate of
ar. In the next section this possibility also provides a
simple illustration of the important estimation
technique known as the Gibbs sampler.

B 4. The Gibbs Sampler—A Simple
Discrete Case

If we knew the joint distribution of the random
variables D and T, then we could find the
prevalence directly as the marginal probability

a=P(D=1)

=P(D=1, T=1) + P(D=1, T=0).

In real-world uses of screening tests, however, we
often have no direct information about the joint
distribution of D and T. Instead, we may know (or
have reasonable estimates of) the two conditional
distributions T | D and D | T. We have seen that the
distribution of T | D is determined by 1 and 6, and
that the distribution of D | T is determined by y and
8. Based on this conditional information, the Gibbs
sampler can be used to estimate prevalence by
means of simulation.

Step 1. Here is how the simulation procedure
works. Begin at step m = 1 with an arbitrary initial
value of D, say, D(1) = 1.

Step 2. At step m = 2, condition on this value
of D(1) to simulate whether T(1) is 1 or 0. That is,
simulate T(1) = 1 with probability 5 or T(1) = 0
with probability n*. (Alternatively, if we had begun
with D(1) = 0, then simulate using 6* or 6.)>

Next, simulate the value of D(2) using
information from vy or 8, as appropriate. For
example, if we happened to get T(1) = 1, then we
would simulate D(2) = 1 with probability
v = P{DQ)=1T(1)=1}.

Step 3. In turn, at step m = 3, simulate T(2)
using either n or 6, and then simulate D(3) using 7y
or 8, depending on the value of T(2).

Notice that at step m = 2 we started with a
value of D(1) and went via a simulated value of
T(1) to obtain a simulated value of D(2). At step
m = 3 we start with this value of D(2) to obtain a
simulated value of D(3).

Iteration: It can be shown that, upon iteration,
this simulation process will stabilize to a limit. So
repeat it to obtain D(1), D(2), ..., D(M,) during a
“burn-in” period long enough to achieve stability,
and then continue on to obtain values D(M;+1), ...,
D(M,) at “steady state.” Finally, we estimate 77 as the
proportion of steps at steady state for which D(m) = 1.

Simulation results: Throughout this article we
are assuming that 7 = 99% and 6 = 97% for our
ELISA screening test. At a particular site, suppose
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that reliable estimates of the other conditional
probabilities are y = 40.24% and 6 = 99.98%.
Based on these four numbers, we used an S-plus
program to simulate 20 runs with M, = 50,000 and
M, = 100,000. (See Appendix D of [1] for the main
simulation loop of our S-plus program
implementing this procedure. The complete
program is also available [1].)

Ten of these runs started with D(1) = 0 and ten
with D(1) = 1. Then we estimated 7 for each run
from the last 50,000 values of D. Table 1 shows the
results. In these circumstances, the results clearly
show that 7 must be near 2%.

It would have been futile to try to simulate 7 =
P(D=1) directly from the conditional distributions
of D | T. The probability y = P(D=1|T=1) is much
too large and 8* = P(D=1|T=0) is much too small.
However, as the simulation goes through the
process described above, the conditional
distributions of T | D come into play to ensure that
in the long run each of these cases is simulated the
appropriate proportion of the time.

Questions: Before we move on, it is
worthwhile to ask several questions about the
simulation process.

First, did the starting value, 0 or 1, of D(1)
make any difference in the values of 7 obtained?
Our results in Table 1 show that the starting value
makes no significant difference.

Second, were our simulation runs long enough?
The similarity of the results in Table 1 shows that
our values of M; and M, were large enough to give
reproducible results, but longer runs would have
further reduced their variability. The running
proportion of D’s taking the value 1 (up to each
stage m) is plotted in Figure 1 for one of our runs.
The stability shown there is typical of all our runs.
(This particular example requires relatively long
simulation runs to achieve satisfactory results
because 6 is nearly 1.)

Third, why did this converging process always
settle down to values of 7 = 2%? Although the 2%
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Figure 1. Running proportion of infected samples.

value of 7 was not an explicit input value, it is
consistent with the values of y and & we assumed
for our hypothetical site. (Recall the computations
in Section 3.) The simulation has reclaimed this 2%
value for 7 from the conditional information we
provided. In the next section we will see the
theoretical basis for this.

Bl 5. A Markov Chain

How do we know for sure that a Gibbs sampler
ever stabilizes, and what determines the limiting
value of 7?2 In our simple example we can show
that the D’s form a two-state Markov chain known
to have a limiting distribution. The key equation to
this end uses the conditional distributions T | D and
D | T to find the transition probabilities of this
Markov chain:

P{D(m+1)=jID(m)=i}
= X, P{T(m)=k, D(m+1)=jlD(m)=i}
= %, P{D(m+D)=j|T(m)=k} P{T(m)=k|ID(m)=i},

form=1,2,3, ... and i, j k=0, 1. The last step
above uses the definition of conditional probability
(twice) and the Markov property

P{D(m+1)=j|D(m)=i, T(m)=k }

= P{D(m+1)=j|T(m)=k},

which holds because the earlier condition D(m) = i
is irrelevant once we are given the later information
that T(m) = k.

With the same values of 7, 8, y and & as in
Section 4, this equation is equivalent to the matrix
equation

5 &
Yy

0 o*
n*n

P=QR=[
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0.9877 0.0123

P 0.97 0‘03]

0.9998 0.0002]_

0.01 0.99j10.5976 0.4024] 10.6016 0.3984

P is the transition matrix of the Markov chain D(1),
D(2), ..., which has state space {0, 1}. For example,
the upper-left element is

Poo = P{D(m+1)=0|D(m)=0}= 66 + 6* v*
=0.9877.
Because P has all positive elements, one can show
that the chain must have a limiting distribution.

In our simple case it was not really necessary to
use simulation to find the limiting distribution A of
this chain. It is the solution of the matrix equation
AP = A which, upon solving two equations in two
unknowns, is seen to be A = (7*, m) = (0.98, 0.02).
The simulated values in Section 3 came quite close
to the true value of 7. (See Appendix A of [1] for
some background information on the convergence
of a two-state Markov chain to the solution of this
matrix equation.)

M 6. Gibbs Sampling When Predictive
Values Are Unknown

We have just seen an example in which the
Gibbs sampler works, but in which simulation is
not really necessary because we can easily find an
analytic solution. It is not difficult to imagine
cases—ijust slightly more complicated than our
example—where classical analytic solutions are
difficult or impossible to find. In such cases the
Gibbs sampler may be a useful statistical tool.

In our hypothetical example it may be realistic
to suppose that the conditional probabilities 1 and
# in the Q-matrix are known. We have assumed
some prior experience in using the ELISA test to
screen blood for the presence of the virus.

Not quite so realistic is the assumption that the
conditional probabilities y and & in the R-matrix
would be known accurately. Each place to be
surveyed would be different, so the predictive
values of positive and negative tests would have to
be estimated for each particular population of
interest. Also, it may be too difficult or costly to
obtain gold-standard determinations.

Specifically, suppose that for a particular site
we know the numbers of units testing positive and
negative, A = #(T=1) and B = #(T=0), respectively,
where the sample size is N = A + B. But we do not
know X = #(T=1, D=1) and Y = #(T=0, D=1). Here
we no longer have the direct estimates X/A of y and
(B - Y)/B of 8. Table 2 shows the theoretical counts
in a sample distribution of D and T with this
notation, where the known data consist only of A
and B.
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Essentially, we are now back in the situation
described in Section 2. In these circumstances the
limit of the simulation process is no longer easy to
find by traditional analytic methods. One reason is
that this is an “under-specified” problem, in which
we seem not to have quite enough information.
Suppose that the sample size N is known. Then the
direct estimate of 7 is p = (X + Y)/N, which requires
us to know both X and Y. But once N is known, A
is the only observed value that provides information.
In Sections 7 and 8 we will see that an approach
using Bayesian estimation and the Gibbs sampler
provides a useful estimate of .

B 7. A Bayesian Framework—Prior
Distributions

In Bayesian statistical inference, population
parameters are considered to be random variables.
The distribution assigned to a parameter before data
are collected is called a prior distribution. In many
applications, expert opinion is used to pick the
prior distribution. After data are available, the
expert opinion in the prior is combined with the
information in the data to find a posterior
distribution of the parameter, which may be used to
draw inferences about the parameter (for example,
to find interval estimates). As the amount of data
increases, the prior has a decreasing influence on
the conclusions drawn. (See Appendix B of [1] for a
very brief introduction to Bayesian inference and an
example that does not involve screening tests; see
the STATS article by Hal Stern [11] for a more
extensive introduction.)

In the situation described in Section 6, it
would be reasonable to take a Bayesian view in
which the prevalence ITis a random variable with a
prior distribution based on the informed views of
experts on blood bank epidemiology. In our case
the level of expertise required is not great. For
example, it would be enough to know that the true
prevalence is likely to be much nearer to O than to 1
at a particular site.

Because [I represents a probability that must
take a value between 0 and 1, it is natural to use a
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prior distribution from the beta family. The shape of
a beta density function is determined by two
parameters « and B. Table 3 gives some
information about four beta distributions that
might be posed as candidates for a prior
distribution. Priors (a) and (b) are two different
ways to reflect the opinion that the prevalence is
likely to be small, and (d) in contrast, reflects a
judgment that the prevalence is considerably
greater. (The values of the parameters « and B were
chosen to give desired values for the modes.) Prior
(¢), having a flat density with no mode, is
“uninformative.” That is, it represents a lack of
definitive expert opinion about prevalence. Figure 2
shows plots of the density curves of these four
choices. In general, we write II ~ Beta(a, ) for
such beta prior distributions.

15

alpha = 2, beta = 50

Density
10

alpha = 2, beta = 20

alpha =7, beta=5

alpha=1,
beta = 1

e

T T T T T T
00 02 04 06 08 10

o

Prevalence

Figure 2. Beta prior distributions for prevalence.

Of course, experts may differ as to the choice
of the prior distribution. One thing we hope for in a
practical Bayesian application is to have an
appropriate design and enough data so that the
choice among reasonable priors has minimal
influence on the conclusions we finally draw.
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B 8. Conditional Distributions and the
Gibbs Sampler

Here we show how the Gibbs sampler works
for the case where the predictive values of positive
and negative test results are not known. This
simulation process begins with two inputs: first, the
beta prior distribution of II with parameters a and
B as discussed in the previous section, and second,
the data, which consist only of the values A and B
as shown in Table 2.

The relationships for our current situation that
correspond to the key equation for the simpler
situation of Section 5 are provided by the
conditional distributions shown below. (Appendix
C of [1] has details of the derivations.)

The conditional posterior distribution of X,
given A and 77, is binomial with A trials and success
probability wn/(7rn + 7 6*). We write this as

X| A, m ~ BinolA, m/(7m + ™ 0%)].

Similarly, the conditional posterior distribution
of Y, given Band r, is

Y|B, 7w ~ BinolB, mn*/(mm* + T*0)].

The Gibbs sampler begins (step m = 1) by
fixing an initial value 77 of II. Next, for step m = 2, it
uses this value 7, the known data A and B, and the
parameter values 1 and 6 to simulate values of X
and Y. These are used to obtain the conditional
posterior distribution of I1, updated to take account
of the values of A, B, X, and Y:

X, Y, A, B~ Beta(X+Y+a, A+B-X-Y+3).

The form and parameters of this conditional
distribution follow from a general version of Bayes’
theorem. (Again here, see Appendix C of [11) To
complete step m = 2 of the simulation, we generate
a new value of 7 from this conditional distribution
XY A B.

For step m = 3, we plug our new value of 7
into the expressions for the probability of success
for each of the above binomial distributions, and
sample new values of X and Y from these
distributions. In turn, these values of X and Y yield
yet another conditional posterior distribution of II,
from which we sample a value of 7 to be used in
step m = 4, and so on.

Upon iteration, this process simulates a
Markov chain IK1), II2), ..., which has the limiting
distribution II | A, B. We “burn in” the chain for
enough steps to ensure that it has stabilized to this
limiting distribution. Then we estimate the
prevalence from the sample distribution of
additional values of 7 generated from the chain at
steady state. (The main loop of an S-plus program
implementing this process is shown in Appendix D
of [1]; for the complete program, also see [1].)

The discrete-valued Markov chain of Sections 4
and 5 took only the values D = 0 and 1. Thus, its
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transitional behavior could be described ina 2 X 2
matrix. By contrast, the Markov chain [I{1), 1I(2),
. of this section can take values throughout the
interval [0, 1], so the conditional distributions
earlier in this section must be used to describe its
transitional behavior. These conditional
distributions play the role of y and &* in Section 5.
In fact, at each step, the success probabilities of the
conditional binomial distributions of X and Y have
values y and 8* (computed by plugging in the
current value ar of IT).

It can be shown that such a continuous-valued
Markov chain reaches a limiting distribution under
conditions broad enough to make the Gibbs sampler
a practical method for applied statistics. (2,7]

B 9. Gibbs Estimates of Prevalence

Here we show the results of the Gibbs sampler
outlined in Section 8 for screening tests in which
the values of y and 8 are unknown. We used the
values 1 = 99%, 6 = 97%, and t = 4.9% based on a
sample size N = 1000, so that A = 49 and B = 951.
We found results for all four of the priors suggested
in Section 4, using simulation runs of length M, =
20,000 in each case.

For prior (a), Figure 3 shows a histogram of
the sampling distribution after a burn-in of 10,000
values of 7r. This histogram estimates the marginal
posterior distribution IT| A,B. Accordingly, it is used
to make the point estimates (mean and median)
and the interval estimate (2.5% and 97.5.% points)
shown in the first row of Table 4. The next four
rows of Table 4 show very similar results obtained
from additional runs using the same prior.

—
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T ¥ T 1
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Figure 3. Sampled prevalence values (after burn-in).

p—

The results of simulations with priors (b) and
(¢) are not much different. Prior (d), with a mode at
60%, gives estimates of prevalence that are only
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about 1% higher than the others. In summary, we
have enough data here that the choice of prior does
not make a great deal of difference in the results.

Figures 4 and 5 for prior (a) are typical of
diagnostic graphics used in Gibbs sampling to
judge whether the process stabilizes by the end of
the burn-in period. Figure 4 shows all 20,000 of
the simulated values of 7 plotted in sequence. It
appears that they fluctuate about a single value with
an almost-constant variability. Figure 5 shows that
the running average of these simulated values
stabilizes. Together these figures show that the
process stabilized and that our burn-in period was
long enough. (Our simulations using the other
three priors were also well-behaved. [1])

0.10

008
L

Prevalence

T T
0 5000 10000 15000 20000

lteration

Figure 4. Sampled prevalence values in sequence.

We also looked at the results of the Gibbs
sampler for the data N = 215 and A = 5, using the
same values of sensitivity, specificity, run size, and
burn-in as above. Table 5 summarizes our results
for the four priors.
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Figure 5. Running averages of sampled prevalences.

Clearly, the first three of these estimates are
more sensible than the negative point estimate
obtained in Section 2 from the same data. Here we
have fewer observations (N = 215), and the data we
do have conflict somewhat with our assumed
specificity (see Section 2). Therefore, the choice of
prior has more influence on the results than in the
example above (N = 1000).

In particular, the results for prior (d) in Table 5
differ markedly from those obtained with the first
three priors. Prior (d) declares values of 7 less than
30% as quite unlikely and values near 0 as almost
impossible (refer back to Table 3 and Figure 1), and
we do not have enough data to totally overcome
this declaration.

Unlike the estimate of Section 2, all of the
estimates in Table 5 avoid negative values because
the prior and conditional distributions of Il do not
allow negative values of 7 at any step of the
simulation.

M 10. A Few Words of Caution

It would be a serious mistake to view the Gibbs
sampler as some sort of statistical magic that can
create new information. The only informational
inputs to the Gibbs sampler are in the model, the
prior, and the data. The simulation does not create
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new information; rather it is a substitute for more
traditional mathematical methods (algebra,
integration, etc.) in converting the information we
input to a possibly more meaningful form.

The examples we have chosen for this article
are quite simple ones, and we hope they have
helped you to understand what the Gibbs sampler
is and how it works. But we do need to stress the
importance of understanding—and using—the full
array of diagnostic tools in every application of the
Gibbs sampler. It is necessary to test whether there
is a unique limit and whether the simulation has
found it. Gibbs sampling is not a cure-all for every
difficult problem of Bayesian inference. Because of
its wide applicability to problems that are not
feasible to treat by other means, it is inevitable that
some attempts to use the Gibbs sampler will be
unsuccessful. Diagnostic methods provide crucial
warnings when that happens.

B 11. More Information About Gibbs
Sampling

So far we have used 1 = 99% and 6 = 97% as if
they were precisely known values. For some
applications of screening tests, the next step toward
building a realistic probability model is to admit
that these values are not known exactly. An extreme
case occurs when there is no gold standard and
knowledge about sensitivity and specificity is rather
vague. This is the situation in [6], where data are
presented for screening tests to detect intestinal
parasites. To model the state of expert knowledge
about m and @, the investigators establish
appropriate prior distributions. After reading our
article, you should be able to follow the Gibbs
sampling procedures used there to estimate
prevalence.

See [1] for the complete annotated computer
code for our simulations. We invite you to replicate
our simulation results, to try different values of the
screening test parameters, and to explore the effect
of using different priors. Also, additional resources
for the study of screening tests, Markov chains, and
Gibbs sampling (including some exercises suitable
for classroom use) are being accumulated in [1].

We have used S-plus in our illustrations of
Gibbs samplers because this software is so widely
available in colleges and universities. For many
applications, it is more convenient to use software
written specifically to support Gibbs sampling, for
example [10].
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A slightly more advanced treatment of Gibbs
sampling than we present here can be found in [2],
and a discussion of some successes and difficulties
in using the Gibbs sampler can be found in [7].
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