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Preface

A while back Dr. STATS got an inquiry from
Andrew Robinson, a graduate student in forest
biometrics at the University of Minnesota.
Andrew asked, “I wonder if you would be so
kind as to discuss the distinctions between the
Bayes/Empirical Bayes/Frequentist perspectives
on a simple statistical process or two? For
example, significance testing, point estimation,
and interval construction for a sample from a
normal population.” Dr. STATS was stumped.
Having been raised (academically) as a
frequentist, with only a smattering of Bayes and
Empirical Bayes, Dr. STATS turned to a colleague
to field this question. STATS magazine is indeed
fortunate to have the article “A Primer on the
Bayesian Approach to Statistical Inference” by
Hal S. Stern. It not only discusses the
distinctions mentioned by Andrew but provides
a clear and balanced exposition on a
controversial topic in statistics.

Hal S. Stern is professor of statistics at the
Department of Statistics, lowa State University. He
teaches both introductory and graduate level courses in
probability and statistics.His research interests include:
applied Bayesian statistics, statistical computing, model
diagnostics. He is interested in applications of statistics
to the biological sciences, social sciences, and sports. He
is an editor-elect of Chance magazine and also writes
a column, “A Statistician Reads the Sports Pages,” for
Chance. Stern received a B.S. degree in mathematics
from the Massachusetts Institute of Technology and an
M.S. and a Ph.D. degree in statistics from Stanford
University. His E-mail address is hstern@iastate.edu.
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B 1. Introduction

The Bayesian approach to statistical inference
has become increasingly popular in recent years,
statistical journals sometimes appear to be full of
articles developing or applying Bayesian methods.
Bayesian methods are also becoming more
common in subject-area journals. The increase in
activity is due largely to computational
developments that have made it practical for
people who have always found the theory
attractive (and others that haven't) to now use
Bayesian methods in working with data. Two
recent books, Gelman et al. (1995) and Carlin and
Louis (1996), provide many examples of
applications of Bayesian methods and describe the
computational issues in some detail. Despite the
increased level of Bayesian activity there is a large
audience, including advanced statistics
undergraduates, beginning statistics graduate
students, and researchers outside of statistics, who
are not aware of exactly what the differences are
between the Bayesian approach to inference and
the procedures commonly used under the heading
frequentist inference. The goal of this article is to
reach this audience by focusing on a simple
example. This style of article involves some risk
because we will find that for simple one-parameter
models the Bayesian approach does not differ very
much from the frequentist approach, and readers
may wonder what the fuss is about. A complex
example, however, risks confusing readers on
details not directly relevant to the Bayesian or
frequentist ideas.
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Before proceeding, in the interest of full
disclosure, I must confess that I find the arguments
in favor of the Bayesian paradigm quite
compelling. T hope that the discussion below is
relatively unbiased (in the colloquial rather than
technical sense), but there are no guarantees.

B 2. Frequentist Inference

Apologies aside, we begin by considering one
of the simplest of all statistical problems. Assume
that Yy,...,Y, are n independent random variables
each having a Gaussian or normal distribution with
mean p and variance o”. It may help to have a
concrete example, so let’s take the Y;s to be
repeated measurements of the weight of an object
on a particular scale. The scale is thought to be
accurate so that the mean u is the true, unknown
weight of the object but there are random
measurement errors due to factors like vibration.
The measurement errors imply that there is
variability (the measurements will not all be equal)
and o” is a measure of this variability,

There is a minor problem here since the
normal distribution assigns probability mass to the
entire real line including negative values whereas
weights must be positive. We don’t worry about
this issue, assuming that the objects we measure
are relatively heavy compared to o. To keep things
incredibly simple we assume that ¢ is known.
Although this is usually unrealistic, we might have
a great deal of experience with this scale and be
willing to treat the variance of the measurement
errors as known. The goal is inference about the
fixed but unknown parameter u based on a sample
of observed values yi,...,y,. We follow classical
notation in this section, allowing uppercase
Roman letters to denote random variables and
lowercase Roman letters to denote observed
values.

Before getting down to details we stop to
discuss the title of this section. The term
“frequentist” is actually derived from the argument
that uses long-run frequencies of events to define
probabilities. Hence the term “frequentist
inference” is not exactly well defined. What we
have are a collection of techniques or procedures
that have good properties under the repeated
sampling view that characterizes the frequentist
definition of probability. It is these procedures that
we review here in the context of point estimation,
interval estimation, and significance testing. An
exhaustive description is not attempted, instead we
illustrate the kinds of statements that one makes
from the frequentist perspective and point out
some relevant features.
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2.1 Point estimation

The sample mean, Y = (1/n)2)Y,, is a natural
estimator for the population mean u. How shall we
decide if this is in fact a good estimator? The
frequentist perspective evaluates estimators (or any
other inference procedure) based on properties that
would hold under repeated sampling from the
same model with fixed values of the unknown
parameters. Thus, for example Y is said to be
unbiased because the average value of Y in
repeated samples from a population with mean y is
equal to u (we could write E(Y|y) = p where the u
is included as a conditioning argument to
emphasize that yu is being held fixed in the repeated
samples). Unbiasedness is one property that
supports the use of the sample mean as an
estimator of u._We can also evaluate other
properties, e.g., Y is minimum variance among
unbiased estimators. It is also common to evaluate
large-sample or asymptotic properties of the
estimators (examples include properties like
consistency and efficiency but we dont formally
define these terms here).

2.2 Interval estimation

The sampling distribution of Y is N (u,a'z/n).
This is the distribution that would be observed in
repeated samples of size n from our normal
population with mean y and variance o. From this
sampling distribution it follows that the interval
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Figure 1. Demonstration of the frequentist
interpretation of confidence intervals. Twenty 95%
confidence intervals based on 20 samples of size 10
from a normal population with mean 100 and standard
deviation 2. The tick mark in the middle of each interval
is located at the sample mean. The dashed vertical line
indicates the true population mean. Nineteen of the 20
intervals contain the true population mean.
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will contain the true population mean in 95% of
the repeated samples. This interval is known as a
95% confidence interval for the population mean
u. It is emphasized in standard introductory
textbooks (e.g., Mcore, 1995, pg. 344) that the
confidence level applies to the performance of our
procedure in repeated samples. Under this view, it
is not appropriate to say that the probability is 95%
that the true mean p is in the interval for a single
fixed data set (i.e., once the random variable Y has
been replaced by the observed mean y). Our
procedure for generating intervals is such that the
interval will contain the true value 95% of the
time; however, for a given data set the interval
either contains the true mean or not with no
randomness remaining. Figure 1 provides an
illustration where u is fixed and separate intervals
are created for each of 20 samples (19 of the 20
intervals contain the true value). This frequentist
interpretation can be difficult to grasp for
beginning students.

2.3 Significance testing

The traditional approach to significance testing
begins with a null hypothesis and an alternative
hypothesis. Then, for an appropriate test statistic
T(Y,,...,Y,) we derive a procedure that allows us to
determine the propriety of the null hypothesis.
This is measured by the p-value which gives the
probability that in repeated samples we would
obtain a test statistic value as or more extreme than
the observed value under the null hypothesis.
Small p-values suggest that the data we have are
unusual under the null hypothesis which suggests
that the null hypothesis may be false (either that or
our sample was just an unlucky one). For example,
suppose we are weighing a bar supposed to contain
100 lbs. of material and are concerned that the bar
may be too light. We would then wish to test the
null hypothesis that 4 = 100 (or u = 100) versus
the alternative hypothesis u < 100 in our normal
model. We can use Y as our test statistic in which
case the p-value for an observed sample mean y is

p= @( \f (5-100)).

Several aspects of this procedure should be
emphasized. First, the test does not treat the null
hypothesis and the alternative hypothesis
symmetrically. The p-value is computed assuming
the null hypothesis is true and consequently it bears
only on the appropriateness of the null hypothesis.
The alternative hypothesis serves primarily to help
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us decide what test statistic to use and which
values of the test statistic should serve as evidence
against the null hypothesis. Second, the p-value is a
probability relevant to repeated samples from the
population assuming that the null hypothesis is
true. The p-value does not measure the probability
that the null hypothesis is true, countless Statistics
101 student exam papers not withstanding. A third
point is that to get a reasonable conclusion we have
included more extreme values of the test statistic in
our definition of the p-value even though they
weren't observed. Finally, it should be emphasized
here that most statisticians (frequentist or Bayesian)
now realize that an over-reliance on significance
testing, especially on binary accept/reject decisions,
is not useful for science. Confidence intervals are
constructive statements about plausible values for
the unknown parameter y; tests are negative
statements that rule out specific hypothesized
values.

M 3. Bayesian inference

The key features of the Bayesian approach to
inference are: (1) all unknowns are treated as
random variables with probability distributions
used to describe the state of our knowledge about
these unknowns, and (2) inference about
unknowns is derived using Bayes’ rule (described
below) to condition on the values of observed
quantities. Qualitatively, the Bayesian approach
begins with a probability distribution describing
our state of knowledge about unknowns (usually
parameters) before collecting data, and then uses
observed data to update this distribution. We now
introduce Bayesian terminology and the technical
machinery of the Bayesian paradigm in the context
of our example. As in the previous section we
suppose that Y;,...,Y, are n independent random
variables each having a normal distribution with
unknown mean p and known variance o, Under
the Bayesian paradigm the unknown mean y is also
a random variable. Because of this it would be
more precise for a Bayesian to say that Y,,....Y,,
conditional on the unknown value of u, are n
independent random variables each having a
normal distribution with mean u and known
variance ¢%. This is known as the data distribution,
or more formally as the conditional distribution of
the data given the model parameters; in the general
case we write p(Y,,...,Y,lu). This distribution,
known as the likelihood function when it is viewed
as a function of u for a given data set, is exactly the
same distribution used to construct the frequentist
procedures in the previous section. To complete
the probabilistic description of all the random
variables, the marginal distribution of the
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unknown parameter y must be specified. The
marginal distribution of y which we denote
generically as p(u) is called the prior distribution; it
describes our state of knowledge about y before
seeing any data. We use p(-) to represent all
distributions in this paper, even though they can
be very different functional forms. Readers without
any background in statistical theory can think of
the prior distribution p () as identifying those
values of u that we most believe to be true before
observing the data. Inference for the unknown u
given observed values y,,...,y, is obtained from the
laws of probability, namely Bayes’ rule,

Py .y = PO yalw) PG
’ . p(yl,...,yn)

where p(yy,...,y,) is the marginal distribution of the
data and can be derived from p(y,,...,y,lw) and p(u).

The result of Bayes’ rule, p(ulyy,...,y,), is known
as the posterior distribution of u and it describes our
state of knowledge about y after observing yy,....y,.
The posterior distribution is fundamental to Bayesian
inference for u. The Bayesian approach makes
probability statements on unknowns after fixing the
things that have been observed at their known
values. This means that we do not think about
repeated samples from the same population — we
fix our attention on the sample at hand.

The prior distribution appears to be the most
troubling point for many statisticians. They ask
where such prior distributions come from and
wonder about the impact of the prior distribution
on the conclusions that we reach. It is important to
address this concern and we return to it in some
detail later. For now we pick a convenient prior
distribution and revisit our discussion of point
estimation, interval estimation, and significance
testing. Suppose the u is assumed to follow a
normal distribution with mean y, and variance 7°
where p, and 7” are specified constants. This means
that a priori we expect the value of y to be near y,,
e.g., the probability under the prior distribution is
0.95 that u is between y, — 7 and y, + 27. Some
algebra is required to obtain the posterior
distribution from Bayes’ rule but the result is again
a normal distribution,

u |.y1""ayn~ N(unvvn)v

where

1
and V,= 71T
—T+

g

“‘~| —

To interpret the posterior distribution we use the
term precision for the reciprocal of the variance.
The posterior mean, u,, is a precision-weighted
average of the sample mean, y, and the prior
mean, U, If the prior information is extremely
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precise (7> small), then the posterior mean for the
unknown y will be heavily influenced by the prior
mean (u,). If on the other hand our prior
information is vague (7° large), then our posterior
mean will be primarily determined by the data.
Finally, the precision of the posterior distribution,
V;! is just the sum of the precisions of the prior
distribution and the data distribution.

3.1 Point estimation

The posterior distribution describes our state
of knowledge about p after observing the data,
specifying which values are plausible and how
likely each is. A point estimate is just a one-number
summary of the posterior distribution. In general,
the mean of the posterior distribution, the median
of the posterior distribution, and the mode of the
posterior distribution could all be reasonable point
estimates for p. In this example, they all agree but
this will not generally be the case. To choose a
single point estimate under the Bayesian
perspective, we require a loss function that specifies
the cost of an estimation error, and then we choose
as our estimate the value that minimizes the
expected loss under the posterior distribution. Here
again, some object to the formality required by the
Bayesian paradigm, a loss function is required to
define an optimal point estimate. It is possible to
consider whether Bayesian point estimates possess
desirable frequentist properties (e.g., determine if
they are unbiased) but these properties are not
essential to the Bayesian approach. The increasing
emphasis on computation in Bayesian work has
meant that we often display graphical/numerical
summaries of the posterior distribution rather than
relying on a particular loss function to define a
particular point estimate.

3.2 Interval estimation

The posterior distribution allows us to identify
intervals that contain y with any specified
probability. These are called posterior intervals or
credible sets. In our example, (i, = 1.96\/Vn) is a
95% central posterior interval. Since y is viewed as
a random variable under the Bayesian paradigm, it
is permissible to say that for any given data set, u
lies in the stated interval with 95% probability.
Recall that such a statement is not possible using
the frequentist definition of a confidence interval.
The Bayesian approach makes explicit use of
probability theory to obtain probability statements
about the unknown parameter given the single
sample at hand, whereas the frequentist approach
makes probability statements about the
performance of procedures in repeated samples.
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Figure 2. Bayesian posterior distribution for 4. The prior
distribution is assumed to be a normal distribution with
mean 110 and standard deviation 10. The data are 10
observations from a normal population with y = 99.45
and o = 2 (this is sample 1 that was used to generate
one of the confidence intervals in Figure 1). The
posterior distribution is normal with mean p,, = 99.49
and standard deviation V'V, = 0.631. The shaded region
is the central 95% region; it is quite similar to the
confidence interval for sample 1 in Figure 1 because the
prior distribution is vague.

Figure 2 shows the posterior distribution in one
case with a central 95% interval indicated.

3.3 Significance testing

In our simple setting, a decision regarding
whether p < 100 (the weight of our bar is less than
advertised) or y = 100 could be made by
computing the posterior probability that y > 100.
This is easily done using a posterior distribution
like the one pictured in Figure 2. Note that this is a
probability that addresses directly the significance
testing question about the unknown . It differs
dramatically in interpretation from the p-value,
which is a probability concerned with repeated
samples under a fixed, null value for the parameter.
A more formal procedure exists for testing one
hypothesis versus another in the Bayesian
paradigm, known as the Bayes factor. Unfortunately,
it will take us reasonably far afield to go into detail,
so we do not discuss Bayes factors here.

M 4. Prior distributions

The Bayesian perspective avoids some of the
conceptual difficulty associated with interpreting
confidence intervals and p-values. Unfortunately,
the “price” that is required to get these benefits,
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namely the specification of a prior distribution for
the unknown parameter, is one that many people
are unwilling to pay. It can be disturbing that
individuals with different prior distributions will
obtain different answers, but we should remember
that this occurs every day when individuals with
different information make different decisions.

We now consider some statistical issues related
to specifying the prior distribution. One key point
is that in large samples the prior distribution
becomes irrelevant. In our simple normal
distribution example as we let n — oo for any prior
distribution (i.e., any choice of y, and 7°) of the
posterior distribution, the asymptotic behavior of
the posterior distribution doesn’t depend on the
parameters of the prior distribution. Qualitatively,
if we weigh an object hundreds or thousands of
times then we would likely disregard our prior
information in favor of the data from the scale. In
the limit the posterior distribution would behave as
if there were no prior information, uly,,....y, ~
N(y,a*/n). Note that this limiting result is similar
to the usual sampling distribution result except of
course that here y is random and ¥ is fixed. In fact,
the result suggests that although Bayesian and
frequentist conclusions may differ in finite
samples, they will tend to agree asymptotically
This result holds more generally as well. Of course,
data analysts can’t generally rely on asymptotics, so
we now briefly describe several approaches to
developing prior distributions.

The Bayesian approach requires our prior
distribution be an honest assessment of our prior
beliefs about model parameters. Although people are
hesitant to supply such subjective prior distributions
it is often the case that some prior information is
available. In our scale example if we know what kind
of object is to be weighed, then we could likely
supply a range of plausible weights. 1f it is possible to
specify a prior distribution, then the Bayesian
paradigm provides the natural way (in fact, the only
reasonable way) to update our prior beliefs given
new data. Tools for helping researchers develop prior
distributions is one area of Bayesian research.

Often the choice of a prior distribution is
made easier, although possibly less honest, by the
existence of conjugate families, families of prior
distributions that combine with a given data
distribution to produce posterior distributions in
the same family. The normal prior distribution in
our example is a conjugate prior distribution for
the normal data distribution, they combine to
produce a normal posterior distribution. Conjugate
prior distributions are convenient to use because
they make calculations easy and, because they are
typically well studied, they can be easily
interpreted. Conjugate prior distributions are
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capable of supporting a variety of prior opinions
(e.g., by making difference choices of u,,7°) but not
all. Choosing specific values of y, and 7* remains a
bit of a stumbling block for some, so that automatic
methods have occasionally been proposed.
Empirical Bayes methods use the data to help
choose the parameters of the prior distribution.
Empirical Bayes techniques are usually applied in
more complex models (e.g., analyses that
incorporate random effects); we do not discuss such
techniques any further in this article.

The desire to avoid using subjective prior
information and/or arbitrary distributional forms
has led to a great deal of work using vague or
“non-informative” prior distributions.

Formally a vague prior distribution is one that
assigns roughly equal probability to a wide range of
possible values. In our normal example, the
contribution of the prior distribution depends on
its precision compared to the precision of the data
distribution, choosing 7° = 100* (a very flat normal
prior distribution) when o’ = I would be
considered a vague prior distribution. A vague
prior distribution will not have a strong influence
on the ultimate form of the posterior distribution.
In the limit, vague prior distributions may become
so vague as to no longer be proper distributions
(they may not integrate to one!). It is “legal” to use
improper prior distributions as long as we verify
mathematically that the resulting posterior
distribution is proper. Improper prior distributions
are popular because sometimes they appear to be
“non-informative” in that they reproduce classical
frequentist results. It is probably best to think of
improper prior distributions as approximations to
real prior distributions.

If the improper prior distribution leads to a
proper posterior distribution and sufficiently
accurate conclusions then we might accept the
resulting analysis. If not, then we would need to
think harder about an appropriate prior distribution.

B 5. Why use Bayesian methods?

The relatively simple example we have
discussed makes it difficult to answer this question.
It is tempting to conclude, since the posterior
distribution of y in our example resembles the
frequentist sampling distribution when we have
large samples or vague priors, that the Bayesian
analysis is only useful in cases where the prior
information is strong. The argument might then
continue, since data analysis problems for which
there is strong prior information dont come along
terribly often, why be Bayesian? I think there are
several problems with this argument. First, the
Bayesian approach provides a coherent method for
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analyzing data with natural probability-based
interpretation of the results, e.g., for interval
estimates. Second, it is possible to draw valid
Bayesian inferences in finite samples (although the
computation might be a bit harder), whereas except
for special cases frequentist tests and confidence
intervals rely on asymptotic (large-sample) results.
Finally, in many multiparameter problems, prior
information is not as rare as one might think. For
example, prior information may suggest to us that a
set of parameters can be treated as a sample from a
common population (e.g., a random effects model
as described in the next paragraph).

More convincing motivation to use Bayesian
methods can be found in models that are more
sophisticated than our single normal sample. These
sophisticated models are not necessarily terribly
complex and are often quite realistic for solving
scientific problems. We consider one example, the
use of the mixed linear model in animal breeding
applications. The standard model used in animal
breeding includes a number of linear regression
parameters relating animal characteristics to the
outcome of interest, plus one parameter for each
animal that describes the animal’s unobservable
genetic “breeding value.” Studies with thousands of
animals therefore include thousands of parameters.
These animal breeding values are usually assumed
to follow a normal distribution with known non-
diagonal covariance matrix (i.e., they are treated as
correlated random effects). To a Bayesian the
normal distribution of these random effects is just a
prior distribution for those parameters. The
Bayesian paradigm can be used to draw
conclusions about the random effects (e.g., about
which animals have the largest breeding values).
Conceptually we just apply Bayes’ rule; in practice
this may require sophisticated computing
techniques, like Gibbs sampling or other Markov
chain Monte Carlo algorithms.

As mentioned at the start, I find the Bayesian
approach to data analysis quite attractive. For me,
there are two compelling reasons. First, probability
is the language that statisticians use to describe
uncertainty and it seems natural to me to use this
language in describing our state of knowledge
about the value of unknown parameters. Second, it
is generally quite obvious how to proceed in the
face of added complexity (missing data, additional
hypothesized structure in a model) or new data.

B 6. Conclusions

The frequentist approach is generally still the
dominant one in most, but not all, graduate
statistics programs. It is not the intent of this article
to convince anyone that Bayesian approaches are
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always better than frequentist approaches. Instead,
I have tried to introduce the Bayesian approach
and demonstrate both similarities to the frequentist
approach (use of parametric data distributions
dependent on unknown parameters) and
differences from the frequentist approach (use of
probability distributions for unknowns).

This article is barely an introduction for
interested readers. The Bayesian literature is vast and
growing. The recent texts by Gelman et al. (1995)
and Carlin and Louis (1996) contain a number of
examples that better illustrate the difference between
Bayesian and frequentist analyses. Moreover, we
have not addressed at all those statisticians who
attempt to draw inferences directly from the
likelihood function (data distribution) without
relying on either repeated sampling or prior
information, nor have we considered nonparametric
approaches to data analysis. Efron (1986) and
Lindley (1990) provide excellent discussions
comparing Bayesian and non-Bayesian approaches.
Even better, both of these papers are discussed by a
number of statisticians from a variety of Bayesian
and non-Bayesian perspectives, providing an
excellent survey of the many opinions concerning
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