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Survival Analysis

Let T ≥ 0 have density function f(t) and distribution function F (t). The survival function S(t) is

S(t) = 1− F (t) = P (T > t)

and the hazard rate or hazard function λ(t) is

λ(t) =
f(t)

1− F (t)

interpreted as

λ(t) ≈ P (t < T < t + dt | T > t) = P (expiring in the interval (t, t + dt) | survived past time t).

Integrating λ(t) gives ∫ t

0

λ(u)du = − log S(t)

⇒ S(t) = e−
R t
0 λ(u)du

Censoring

What distinguishes survival analysis from other fields of statistics is censoring. Vaguely speaking, a censored
observation contains only partial information about the random variable of interest.
Let T1, T2, . . . , Tn

iid∼ F (t).

Type I

Let tc be a preassigned fixed number which we call the fixed censoring time. We observe Y1, . . . , Yn

Yi =
{

Ti if Ti ≤ tc,
tc if Ti > tc.

Type II

Let r < n be fixed, and let T(1) < T(2) < . . . < T(n) be the order statistics of T1, T2, . . . , Tn. Observation
ceases after the rth failure, so we can observe T(1), T(2), . . . , T(r). The full observed sample is

Y(1) = T(1)

Y(2) = T(2)

...
Y(r) = T(r)

Y(r+1) = T(r)

...
Y(n) = T(r)
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Type III (Random Censoring)

Let C1, C2, . . . , Cn be iid each with distribution function G. Each Ci is the censoring time associated with
Ti. We can only observe (Y1, δ1), (Y2, δ2), . . . , (Yn, δn) where

Yi = min(Ti, Ci) = Ti ∧ Ci

δi = I(Ti ≤ Ci) =
{

1 if Ti ≤ ci (not censored),
0 if Ti > ci (censored).

notice Y1, . . . , Yn are iid with some distribution function H.

Example (p.185)

From February 1972 to February 1975, 29 severe vival hepatitis patients satisfied the admission criteria for
a 16 week study of the effects of steroid therapy at the Stanford, Veterans Administration, and Santa Clara
Valley Hospitals. These patients were randomized into either the steroid or control group. The survival
times (in weeks) of the 14 patients in the steroid group were
1, 1, 1, 1+, 4+, 5, 7, 8, 10, 10+, 12+, 16+, 16+, 16+.

Assume an exponential distribution S(t) = e−λt

a) Estimate λ by maximum likelihood and construct an approximate 95% CI for λ.

b) Estimate S(16) and construct an approximate 95% CI for S(16).

c) Estimate the median survival time and construct an approximate 95% CI for the median.
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Solutions:

a) Assume random censoring, the pair (yi, δ) has likelihood

L(yi, δi) =
{

f(yi) if δi = 1 (uncensored)
S(yi) if δi = 0 (censored)

= f(yi)
δiS(yi)

1−δi .

The likelihood for the full sample

L = L(y1, . . . , yn; δ1, . . . , δn)

=
n∏

i=1

L(yi, δi)

=

[∏
u

f(yi)

][∏
c

S(yi)

]

=
[
λnue−λ

P
u ti

] [
e−λ

P
c ci

]

= λnue−λ
Pn

i=1 yi

log L = nu log λ− λ

n∑

i=1

yi

∂

∂λ
log L =

nu

λ
−

n∑

i=1

yi

Setting
∂

∂λ
log L = 0 gives λ̂ =

nu∑n
i=1 yi

∂2

∂λ2
log L = −nu

λ2

I(λ) =
nu

λ2

So
λ̂− λ√

λ2

nu

d−→ N(0, 1)

Note that the normality approximation can be improved by transforming the estimate.
By the δ-method,

λ̂
d−→ N

(
λ,

λ2

nu

)

then

log λ̂
d−→ N

(
log λ,

1
nu

)



Statistics 6502, Spring 2007 4

Notice that 1/nu, the asymptotic variance of log λ̂, does not depend on the unknown parameter λ. It
is an empirical fact that transforming an estimate to remove the dependence of the variance on the
unknown parameter tends to improve the convergence to normality by reducing the skewness.

log λ̂
d−→ N

(
log λ,

1
nu

)

The 95% CI becomes

elog λ̂±zα/
√

nu

(
λ̂e−zα/

√
nu , λ̂ezα/

√
nu

)

(0.031, 0.136)

b) Ŝ(16) = e−λ̂(16)

95% CI for S(16) is

(
e−0.136(16), e−0.031(16)

)

(0.113, 0.609)

c) t̂med = log 2/λ̂ = 10.69

95% CI for the median is
(

log 2
0.136 , log 2

0.031

)

(5.097, 22.36)

Reference:

Miller Jr., Rupert G., Survival Analysis, Wiley, 1981.


