CALIFORNIA STATE UNIVERSITY, EAST BAY STATISTICS DEPARTMENT

Statistics 6501 Mathematical Statistics Winter 2011

Take-home Midterm

Instructions: This is the take-home part of the test. This is a test. You are to work on this test alone and you are not to talk with others in the class. This take-home part of the test will be due next week on Monday.

Simulation in \mathbf{R}

1. Simulate from the Cauchy distribution 10,000 times, three different ways.
(a) Generate 10,000 random values from the $\operatorname{Unif}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Let $x=\operatorname{atan}(u)$.
$\operatorname{plot}(\mathrm{x})$
(b) Generate two vectors of 10,000 random values from the $N(0,1)$.

Let $\mathrm{w}=\mathrm{x} / \mathrm{y}$.
plot(w)
(c) Generate two vectors x 1 and x 2 of 10,000 random values from the $N(0,1)$.

Let $\mathrm{y} 1=\mathrm{x} 1+\mathrm{x} 2$ and $\mathrm{y} 2=\mathrm{x} 1-\mathrm{x} 2$.
plot $(\mathrm{y} 1, \mathrm{y} 2)$ Does the plot look uncorrelated?
Let x .bar $=(\mathrm{x} 1+\mathrm{x} 2) / 2$ and $\mathrm{s} 2=(\mathrm{x} 1-\mathrm{x} 2)^{* *} 2 / 2$
plot(x.bar, s2) Does the plot look uncorrelated?
Let t.stat $=\operatorname{sqrt}(2)^{*} \mathrm{x}$. bar $/ \mathrm{sqrt}(\mathrm{s} 2)$
plot(t.stat)
2. Simulate from the general bivariate normal distribution and transform to independence.

Start by examining the handout BVNsim.R to answer the following questions.
(a) Make a plot of the $B V N\left(\mu_{1}=10, m u_{2}=25, \sigma_{1}^{2}=2^{2}=4, \sigma_{2}^{2}=3^{2}=9, \rho=-0.4\right)$.
(b) Simulate two vectors of $\operatorname{Unif}(0,1)$ random values of length 2,000 . Make histograms of each vector of random values and make a scatterplot, one vector on the x-axis and the other on the y-axis.
(c) Transform the uniform random values to independent standard normal random values using the BoxMuller method. Make histograms of each vector of random values and make a scatterplot, one vector on the x -axis and the other on the y -axis.
(d) Transform the $B V N(0,0,1,1,0)$ to $B V N\left(0,0, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Make histograms of each vector of random values and make a scatterplot, one vector on the x-axis and the other on the y -axis.
(e) Transform the $B V N\left(0,0, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ to $B V N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Make histograms of each vector of random values and make a scatterplot, one vector on the x -axis and the other on the y -axis.
(f) Determine the angle of rotation θ to transform the BVN to independence. Rotate $B V N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ to $B V N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, 0\right)$. Make histograms of each vector of random values and make a scatterplot, one vector on the x -axis and the other on the y -axis.
(g) Use the R function ipairs() in the IDPmisc library to make better scatterplots.
(h) Use the R function hist2d() int he gplots library to make 2 dimensional histograms.
3. Simulate the bivariate p.d.f. of the minimum and maximum sampling from the $N(0,1)$.

Simulate the bivariate p.d.f. of the minimum and maximum sampling from the $\operatorname{Unif}(0,1)$.

