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SIMULATION:
Computing the 
Probabilities of 
Matching Birthdays

• Birthdays are uniformly distributed throughout the 
year. For some species of animals, birthdays are mainly 
in the spring. But, for now at least, it seems reasonable 
to assume that humans are about as likely to be born on 
one day of the year as on another.

• Ignore leap years and pretend there are only 365 
possible birthdays. If someone was born in a leap year on 
February 29, we simply pretend he or she doesn’t exist. 
Admittedly, this is not very fair to those who were “leap 
year babies,” but we hope it is not likely to change the 
answer to our problem by much.

The Solution Using Basic Probability
Based on these assumptions, elementary probability 

methods can be used to solve the birthday match problem. 
We can find the probability of no matches by considering 
the 25 people one at a time. Obviously, the first person 
chosen cannot produce a match. The probability that 
the second person is born on a different day of the year 
than the first is 364/365 = 1 – 1/365. The probability that 
the third person avoids the birthdays of the first two is 
363/365 = 1 – 2/365, and so on to the 25th person. Thus 
the probability of avoiding all possible matches becomes 
the product of 25 probabilities:

The Birthday Matching Problem

Sometimes the answers to questions about probabilities 
can be surprising. For example, one famous problem 
about matching birthdays goes like this: Suppose 

there are 25 people in a room. What is the probability 
two or more of them have the same birthday? Under 
fairly reasonable assumptions, the answer is greater than 
50:50—about 57%.

This is an intriguing problem because some people 
find the correct answer to be surprisingly large. Maybe 
such a person is thinking, “The chance anyone in the 
room would have my birthday is very small,” and leaps to 
the conclusion that matches are so rare one would hardly 
expect to get a match with only 25 people. This reasoning 
ignores that there are (25 × 24)/2 = 300 pairs of people in 
the room that might yield a match. Alternatively, maybe he 
or she correctly realizes, “It would take 367 people in the 
room to be absolutely sure of getting a match,” but then 
incorrectly concludes 25 is so much smaller than 367 that 
the probability of a match among only 25 people must be 
very low. Such ways of thinking about the problem are 
too fuzzy-minded to lead to the right answer.

As with most applied probability problems, we 
need to start by making some reasonable simplifying 
assumptions in order to get a useful solution. Let’s assume 
the following:

• The people in the room are randomly chosen. Clearly, 
the answer would be very different if the people were 
attending a convention of twins or of people born 
in December.
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since 36525 is the number of possible sequences of 25 
birthdays and

 

is the number of permutations of 365 objects taken 25 
at a time, where repeated objects are not permitted. 
Therefore,

 

William Feller, who first published this birthday match-
ing problem in the days when this kind of computation 
was not easy, shows a way to get an approximate result 
using tables of logarithms. Today, statistical software 
can do the complex calculations easily, and even some 
statistical calculators can do the numerical computation 
accurately and with little difficulty.

————————————————————————
> prod(1 - (0:24)/365)
[1] 0.4313003

> factorial(25)*choose(365, 25)/365^25
[1] 0.4313003
————————————————————————
Figure 1: Two ways to calculate the probability of no matching 
birthdays among 25 people selected at random

In Figure 1, we show two ways to use the statistical 
software R to calculate the probability of no matches. 

Of course, different values of n would give different 
probabilities of a match. With a computer package like 
R that has built-in procedures for doing probability 
computations and making graphs, it is easy to loop 
through various values of n and graph the relationship 
between n and P(At Least 1 Match). Figure 2 shows the 
small amount of R code required, and Figure 3 shows the 
resulting plot. (The labels and the reference lines were 
added later.)

 
————————————————————————
p <- numeric(50)
for (n in 1:50) {
     q <- 1 - (0:(n - 1))/365
     p[n] <- 1 - prod(q) }
plot(p)
————————————————————————
Figure 2: R code to calculate the probability of matching birthdays 
when the number of people in the room ranges from 1 to 50

By looking at the plot, we see the probability of at 
least one match increases from zero to near one as the 
number of people in the room increases from 1 to 50. 
We can see that n = 23 is the smallest value of n for 
which P(At Least 1 Match) exceeds 1/2. The computations 
show the probability for n = 23 to be 0.5073. A room with 

P
25

365 = 25!
25

365( )

 �(At Least 1 Match) = 1 – �(No Match) = 1 – 0.4313 = 0.5687

Figure 3: Plot from R of the probability of at least one pair of matching birthdays when the number of people in the room 
ranges from 1 to 50 
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n = 50 randomly chosen people is very likely to have 
at least one match. Indeed, for n = 50, the probability is 
0.9704. 

The Solution Using Simulation 
A completely different approach to solving the 

birthday match problem is by simulation. Simulation is 
widely used in applied probability to solve problems 
that are too difficult to solve by combinatorics or other 
analytical methods. For example, we can use R to 
build a simulation model to approximate the probability 
that there are no matching birthdays among 25 people 
in a room. 

This consists of first simulating the birthdays in 
many rooms, each with 25 people, and then checking 
to see what percentage of these rooms have matching 
birthdays. It is a little like taking a public opinion poll 
where the “subjects” are the rooms. We create the 
imaginary rooms by simulation, and then we “ask” each 
room, “Do you have any birthday matches?” If we ask 
a large number of rooms, the percentage of rooms with 
no match should be very near the true probability of no 
match in such a room.

This approach allows us to find the approximate 
distribution of the number of repeated birthdays (X). 
From this distribution, we can approximate P(X = 0), 
which we already know to be 0.4313. As a bonus, we also 
can approximate E(X), the expected number of matches 
among 25 birthdays. This expectation would be difficult 
to find without simulation methods. 

Now let’s build the simulation model step by step.

Step One: Simulating birthdays for 25 people in 
one room

Programmed into R is a function called “sample” 
that allows us to simulate a random sample from a finite 
population. To use this random sampling function, we 
need to specify three things.

   First, we must specify the population from which to   
   sample. For us, this is the 365 days of the year. In R, 
   the notation 1:365 can be used to represent the list   
   of these population elements.

   Second, we have to specify how many elements of 
   the population are to be drawn at random. Here, we 
   want 25.

   Third, we have to say whether sampling is to be 
   done with or without replacement. Because we want 
   to allow for the possibility of matching birthdays, our 
   answer is “with replacement.” In R, this is denoted as 
   repl=T. We put the 25 sampled birthdays into an 
   ordered list called b. Altogether, the R code is

b <- sample(1:365, 25, repl=T)

Each time R performs this instruction, we will get a 
different random list b. Below is the result of one run. For 
easy reference, the numbers in brackets give the position 
along the list of the first birthday in each line of output. 
For example, the 22nd person in this simulated room was 
born on the 20th day of the year, January 20. 

  [1] 352 364 246 190 143 272 149

  [8] 206 154 272 61 199 357 141

 [15] 264 157 42 340 287 166 335

 [22] 20 123 214 149

You can see that there happen to be two matches in 
this list. The 6th and 10th birthdays both fall on the 272nd 
day of the year, and the 7th and 25th both fall on the 
149th day of the year. Note that we also would have said 
there are two matches if, for example, the last birthday in 
the list had fallen on the 272nd day.

Step Two: Finding the number of birthday matches 
among 25 people

In a large-scale simulation, we need an automated 
way to find whether there are matching birthdays in 
such a room and, if so, how many repeats there are. 
In R, we can use the “unique” function to find the 
number of different birthdays, then subtract from 25 
to find the number of birthday matches (“redundant” 
birthdays):

x <- 25 – length(unique(b))

For our run above, the list “unique (b)” is 
the same as b, but with the 10th and 25th birthdays 
removed. It is a list of the 23 unique birthdays since its 
“length” is 23. So the value of the random variable X 
for this simulated room is X = 25 – 23 = 2.

Step Three: Using a loop to simulate X for many 
rooms

If we repeat this process for a very large number 
of rooms, we obtain many realizations of the random 
variable X, and thus a good idea of the distribution of 
X. Counting the proportion of rooms with X = 0, we 
get the approximate probability of no match P(X = 0). 
Taking the average of these realizations of X, we get a 
good approximation to E(X). 

When we simulated 10,000 such rooms, our result was 
P(No match) � .4338, which is close to the exact value 
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0.4313 calculated using combinatorics. We also obtained 
E(X) � 0.8081. Additional runs of the program consistently 
gave values of E(X) in the interval 0.81 ± 0.02.

The histogram in Figure 4 shows the approximate 
distribution of X – the Number of Birthday Matches. 
Our approximations would have been more precise 
if we had simulated more than 10,000 rooms, but the 
results seem good enough for practical purposes.

Testing Assumptions
With simulation, it is relatively easy to test the impact 

of the simplifying assumptions about 365 rather than 366 
birthdays and that birthdays are equally likely. Actual 
1997–1999 vital statistics for the United States show some 
variation in daily birth proportions. Monthly averages 
range from a low of about 94.9% of uniform in January 
1999 to a high of about 107.4% in September 1999 
(www.cdc.gov/nchs/products/pubs/pubd/vsus/vsus.htm). 
These fluctuations are illustrated in Figure 5. Daily birth 
proportions typically exceed 1/365 from May through 
September. 

For nonuniform birthdays, computing the probability 
of no matches by analytical methods is beyond the 
scope of undergraduate mathematics; but using R, it 
is easy to modify our simulation so that 366 birthdays 
are chosen according to their true proportions in the 
United States population—rather than being chosen 

uniformly. We ran such a simulation and found that 
within the precision provided by 10,000 simulated 
rooms (about two decimal places), the results for 
the true proportions cannot be distinguished from 
the results for uniformly distributed birthdays. From 
these and related simulations on birthday matching, 
we conclude that, although birthdays in the United 
States are not actually uniformly distributed, it seems 
harmless in solving the birthday match problem to 
assume they are. However, important differences in 
the values of P(X = 0) and E(X) do occur if departure from 
uniform is a lot more extreme than in the United States 
population (See Nunnikhoven or Pitman and Camarri).

Using R Statistical Software
You can download R free of charge online at 

www.r-project.org. The program for doing the birthday 
matching problem with an explanation of the R 
code and an elementary tutorial on R are available 
online at www.sci.csueastbay.edu/~btrumbo/bdmatch/
index.html. This website also includes further details 
of the birthday matching problem in a paper the 
authors presented at the 2004 Joint Statistical 
Meetings. Peter Dalgaard provides an introduction to 
statistics using R in Introductory Statistics with R. His 
book also is available as an electronic book, so check 
with your library.

Figure 4: The simulated distribution of the number of birthday matches (X) in a room of 25 randomly chosen people 



Figure 5: Cyclical pattern of birth frequencies in the United States for 36 consecutive months
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Summary Comments on Simulation
Simulation is an important tool in modern applied 

probability modeling and in certain kinds of statistical 
inference. Many problems of great practical importance 
cannot be solved analytically. 

From the birthday matching problem, we can see 
that—for practical purposes—simulation gives the same 
answer as does combinatorics for P(No Match) under 
the simplifying assumption that there are 365 equally 
likely birthdays. The same simulation provides a value 
for the expected number of matches, which would be 
difficult to find by elementary methods. Because this 
simulation gives what we know to be the correct 
answer for P(X = 0), credibility is given to the value it 
gives for E(X). 

When we want to drop the uniformity assumption, 
we enter territory where analytic methods are much 
more difficult. But a minor modification of the simulation 
program provides us with values of P(X = 0) and E(X). This 
allows us to investigate the influence of our simplifying 
assumptions on results we intend to apply to real life.

In summary, we verified the correctness of a simulation 
method for an easy problem and then modified it to solve 
a closely related, but more difficult, problem. This process 

of building more complex simulation models based upon 
simpler trusted ones illustrates an important principle 
for using simulation reliably to solve a wide variety of 
important practical problems.
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