
Using R to Compute Probabilities of Matching Birthdays
by Bruce E. Trumbo, Eric A. Suess, and Clayton W. Schupp

In this article we introduce the statistical package R and
use it to model and generalize a famous problem about
matching birthdays. The R language is being used more
and more widely in applied probability modeling and
research. Also, R is easy enough to learn that beginning
students can use it for basic statistics and probability
computations. Maybe best of all, R is available free of
charge on the web [1]. Therefore, R is a natural choice
for use in beginning statistics courses [2].
Statement of the Birthday Problem. Suppose that
there are 25 randomly chosen people in a room. What is
the probability that two or more of them have the same
birthday? Ignore leap years, and assume that the 365
days of the year are equally likely birthdays. You may
have seen this problem before. Since Feller introduced it
in his widely-used introductory probability text in 1950,
this problem has become a classic [3].
Solution. We find the probability of no matches by con-
sidering the 25 people one at a time. Obviously, the first
person chosen cannot produce a match. The probability
that the second person is born on a different day of the
year than the first is 364/365 = 1 – 1/365. The prob-
ability that the third person avoids the birthdays of the
first two is 363/365 = 1 – 2/365, and so on to the 25th
person. Thus we have

P(No Match) = 25

365
25

365
P

 = ∏ =

 −

24

0 365
1

i

i
 = 0.4313,

and P(At Least 1 Match) = 1 – 0.4313 = 0.5687. The
computation is a bit tedious because it involves multi-
plying 25 factors. We use R to get the answer.

R is based on vectors. (If you don’t know about vec-
tors, it is good enough for this article to think of them as
ordered lists of numbers, called elements.) For example,
in R the vector (0, 1, 2, ..., 24) can be written as 0:24.
Any arithmetic involving a vector and a single number
is done element by element. (We show a few simple ex-
amples in the next section.) Thus the vector consisting
of the 25 factors in the big parentheses in the displayed
equation above can be written 1 – (0:24)/365.
The R function prod takes the product of the elements
of a vector. Display 1 shows how the computation of
P(No Matches) looks in the “R-Console” window.

Display 1
> prod(1 - (0:24)/365)
[1] 0.4313003

For a room with as few as 25 people, some beginning
students are surprised that the probability of duplicate
birthdays is so large—above 1/2. Perhaps they are

thinking about a different problem: “If I were in the
room, it seems that the chances of someone else having
my birthday would be very small.” The question is not to
find the probability of duplicating any one person’s
birthday, but the chances that any pair of people in the
room have birthdays that match.

Some Basic Ideas of R. Before we explore the birth-
day problem further, we illustrate a few simple facts
about how R works. (After the > prompt in the
R-Console window, you can type the expressions we
show in typewriter type.)
Defining a vector. Because the R language is based on
vectors, we begin by showing a few ways to specify
vectors. The operator <- is used to assign values. For
example, n <- 25 means that n is a vector with 25 as
its single element. The “combining” symbol c can be
used to make vectors with several elements:

v1 <- c(7, 2, 3, 5) means v1 = (7, 2, 3, 5).
Here are a few convenient shorthand notations for making
vectors, along with their meanings expressed in standard
mathematical notation:
v2 <- numeric(4) means v2 = (0, 0, 0, 0),
v3 <- rep(3, 4) means v3 = (3, 3, 3, 3),
v4 <- 1:4 means v4 = (1, 2, 3, 4), and
v5 <- c(v3, v4, 7) is the combination of three
vectors, giving v5 = (3, 3, 3, 3, 1, 2, 3, 4, 7).

Simple arithmetic. Operations are elementwise.
w1 <- 3*v1 means w1 = (21, 6, 9, 15),
w2 <- v1/2 means w2 = (3.5, 1, 1.5, 2.5),
w3 <- 5 - v1 means w3 = (–2, 3, 2, 0),
w4 <- w3^2 means w4 = (4, 9, 4, 0), and
w5 <- w3 + w4 means w5 = (2, 12, 6, 0).

Indexes and assignments. Sometimes we want to deal
with only one element of a vector. The index notation []
helps to do this. The simplest use of indexing is just to
specify the index (position number) you want.
w1[3] returns 9, v5[9] returns 7, and
v2[1] <- 6 changes v2 so that v2 = (6, 0, 0, 0).

When there are n people in the room. As the number n
of people in the room increases, it is clear that the
probability of matching birthdays increases. Of course,
if n = 366 (still ignoring leap years), we are sure to get
at least one duplication. But we will see that the
probability of at least one match becomes very close to 1
for much smaller values of n.

With R it is not difficult to let n run through a
suitable number of values (finding the probability of

2

matches for each value of n) and then to make a plot of
the results. (See Figure 1.) The R script in Display 2
shows how to do this. We chose to let n loop through the
values from 1 to 50, where we determined by trial and
error that 50 is about big enough.

Display 2

p <- numeric(50)
for (n in 1:50)

{
q <- 1 - (0:(n - 1))/365
p[n] <- 1 - prod(q)
}

plot(p) # Makes Figure 1
p # Makes prinout below

 > p
 [1] 0.000000000 0.002739726
 ...
[21] 0.443688335 0.475695308
[23] 0.507297234 0.538344258
[25] 0.568699704 0.598240820
 ...
[49] 0.965779609 0.970373580

When the loop is completed, 50 values have been put
into the vector p. For each value of n = 1, ..., 50, the cor-
responding element is the probability of finding at least
one repeated birthday in a room with n people. To save
space, the printout of the vector p has been abridged in
Display 2. The numbers in brackets give the index
(value of n) of the first result printed on each line. In
particular, the 25th element of p is 0.5687. The 23rd
element is the first to exceed 1/2. The printout in
Display 2 and the plot in Figure 1 both show that in a
room with as many as 50 people we are very likely to
see some matching birthdays.
Figure 1: The probability P(At Least 1 Match)
increases from 0 to near 1 as the number of people in
the room increases from 1 to 50.

More about R. Before we return to the birthday prob-
lem for a deeper look, we pause to say a little more
about R.

Some vector functions. Notice that most of the functions
we show below return single numbers. But unique
returns a vector; it is a crucial function later in this
article.
max(w2) returns 3.5, mean(w3) returns 0.75,
sum(v1) returns 17, prod(v4) returns 24, and
length(v5) returns 9.
x2 <- unique(v5) means x2 = (3, 1, 2, 4, 7), as
“redundant” elements are eliminated, so that
length(unique(v5)) returns 5.

Comparisons and logical values. So far, we have con-
sidered only vectors of numbers, but R can also use
vectors of “logical” values: T for True and F for False.
Sometimes these values arise from comparisons. In this
article we use the comparison operator ==, which checks
to see if numerical values are equal. If R is “forced” to do
arithmetic on logical values, then T is taken to be 1, and F
to be 0.
y <- (w4==4) means y = (T, F, T, F), and
mean(y) returns 0.5: half of the values of w4 are 4s.

Sampling from a finite population. The sample func-
tion selects a sample of a specified size from a given
population. For example, sample(1:365, 1) takes one
person’s birthday at random from among the numbers
1, 2, ..., 365. The first argument is the population and the
second is the sample size. We used this function three
times, obtaining random birthdays 106, 182, and 140.

If the sample size is two or more, we have to specify
whether sampling is to be done with replacement. To
sample birthdays of 25 randomly chosen people, we
could use sample(1:365, 25, repl=T), where the
third argument indicates that sampling is with replace-
ment. Similarly, sample(1:6, 2, repl=T) simulates
rolling a pair of dice, and sample(1:52, 13) simulates
a bridge hand, where sampling is without replacement
(the default repl=F need not be specified).

Of course, there is a lot more to R than we have shown
here, but we have shown enough for now. (The best way
to learn R, or any other multi-purpose software package,
is just to plunge in, learning parts of it as needed.)
Simulating the Birthday Process. Next, we use R to
simulate the process of looking for matching birthdays
among n = 25 people in a room. This is an entirely dif-
ferent approach from the probability computations we
did earlier. Now we will simulate the birthday process
many times and summarize the results.

3

Figure 2: The simulated distribution of the number of
birthday matches in a room with 25 randomly chosen
people. The height of the left hand bar estimates
P(No Matches).

This approach allows us to find the approximate
distribution of the number X of duplicate birthdays.
From this simulated distribution, we can approximate
P(X = 0), which we already know to be 0.4313, and we
can also approximate E(X), which would be somewhat
difficult to find without simulation methods. Later in
this article we will show how simulation methods allow
us to investigate the importance of some of the assump-
tions we have made so far in solving the birthday prob-
lem. Now we build the simulation model step by step.
(1) Simulating birthdays for 25 people in a room. We
have already seen that this can be done with the sample
function. We put the results into a vector b, which has
25 elements.

b <- sample(1:365, 25, repl=T).
(2) Finding the number of birthday matches among 25
people. We use the unique function to find the number
of different birthdays, then subtract from 25 to find the
number X of birthday matches (“redundant” birthdays):

x <- 25 - length(unique(b)).
(3) Using a loop to simulate X for many rooms. Repeat
the process for m = 10,000 rooms. In this simulation x
is a vector with m elements. The population mean E(X)
= µX is approximated by mean(x), the sample mean of
the m simulated values of X. The population probability
P(X = 0) is approximated by mean(x==0), the sample
proportion of Xs equal to 0. And hist makes a histo-
gram (Figure 2) of the simulated distribution of X. (The
parameters of hist are chosen to make a nice looking
graph.) The complete R script is shown in Display 3
along with the results of one of our runs. (Semicolons
separate multiple statements on a line of code.)

Display 3
n <- 25; m <- 10000; x <- numeric(m)
for (i in 1:m) {

b <- sample(1:365, n, repl=T)
x[i] <- n - length(unique(b)) }

mean(x); mean(x==0)
cut <- (0:(max(x) + 1)) - 0.5
hist(x, breaks=cut, freq=F, col=8)

> mean(x)
[1] 0.8081
> mean(x==0)
[1] 0.4338

The simulated value 0.4338 of the probability of seeing
no matches agrees well with the known exact value
0.4313. Additional runs of the program consistently
gave values of E(X) in the range 0.81 ± 0.02.
Checking Assumptions. In modeling any real life
situation we must make assumptions. Here we hope that
the people in the room are randomly chosen from the
population at large — for example, not a group of twins
or of people born in Sagittarius. Even though we know it
is not true, we assume that there are no leap years and
that the birth rate is uniform throughout the year. How
sensitive is our computation of the probability of dupli-
cate birthdays to the assumption that there are 365
equally likely birthdays? A slightly more general simu-
lation can answer this question.

Figure 3: Cyclical pattern of US birth frequencies for
36 consecutive months. Daily birth proportions typically
exceed 1/365 from May through September.

The sample function can take samples from a speci-
fied population—with specified probabilities for each
element of the population. Now assume that 200 days of
the year have below average birthrates and 165 days
have above average birthrates. Also, let’s account for leap
years. Specifically, we model the birthrates on various
days of the year according to 366 weights w given by

w <- c(rep(4,200), rep(5,165), 1).

0 10 20 30 40

95

100

105

Month

P
er

ce
nt

Empirical Daily Birth Proportions: By Month Jan '97 - Dec '99
(Percent of Uniform = 1/365 Per Day)

Source: Nat'l Ctr. for Health Statistics

4

Then the n birthdays can be sampled with replacement
and with our designated probabilities from among the
numbers 1, 2, ..., 366 by using the function

b <- sample(1:366, n, repl=T, prob=w).
The last parameter gives proportional weights or

probabilities for each population element. The population
and weighting vectors should be of equal length, here
366. In use, R multiplies the 366 weights by a constant so
that they sum to 1. So here the weight 0.002460 =
4/[200(4) + 165(5) + 1] (which is 89.8% of uniform
1/365) appears 200 times; 0.003075 (112.2% of 1/365)
appears 165 times; and 0.000615 represents February 29.

Actual 1997-99 data for the US show slightly less
variation in daily birth proportions than we used in our
simulation [4]. Monthly averages range from a low of
about 94.9% of uniform in January 1999 to a high of
about 107.4% in September 1999. See Figure 3.

Display 4 shows the minor change in the script of
Display 3 that is needed in order to implements the
weights. (Equal weights are used unless the prob
parameter is specified.)

Display 4
n <- 25; m <- 20000; x <- numeric(m)
w <- c(rep(4,200), rep(5,165), 1)
for (i in 1:m) {

b <- sample(1:366, n, repl=T, prob=w)
x[i] <- n - length(unique(b)) }

mean(x); mean(x==0)

> mean(x)
[1] 0.819
> mean(x==0)

 [1] 0.42215

The values P(X = 0) ≈ 0.42 and E(X) ≈ 0.82 based on
a particular pattern of birthdays that are not equally
likely are not very much different from the results we
obtained under the assumption of equally likely birth

days. From this and related simulations, we conclude
that, although birthdays are not actually uniformly dis-
tributed, it seems harmless in practice to assume they are.

When one abandons the assumption that birthdays are
equally likely, direct computation of P(No Match) is no
longer elementary [5]. But simulation is almost as easy as
in the uniform case. There are many real-life situations in
which the only feasible way to check assumptions is by
means of simulation.

References and Web Resources.
[1] R software and manuals are available at

www.r-project.org

[2] Peter Dalgaard: Introductory Statistics with R,
2002, Springer.

[3] William Feller: An Introduction to Probability
Theory and Its Applications, Vol. 1, 1950
(3rd ed., 1968), Wiley.

[4] Birth frequencies are based on raw monthly totals
available at
www.cdc.gov/nchs/products/pubd/

vsus/vsus.html
[5] Thomas. S. Nunnikhoven: A birthday problem

solution for nonuniform frequencies,
The American Statistician, 46, 270–274, 1992.

Auxiliary instructional materials for this article are
posted at

www.sci.csuhayward.edu/~btrumbo/
birthmatch

Authors: Bruce Trumbo and Eric Suess are faculty
members in the Statistics Department at California State
University, Hayward; Hayward, CA 94542 USA. Email:
btrumbo@csuhayward.edu..

Clayton Schupp is an MS student in the Department.
He also works in the Quality Metrics department at Sun
Microsystems, currently analyzing CPU failure rates.

Copyright © 2003 by Bruce E. Trumbo. All rights reserved.

