Project II

Instructions: Complete one of the following suggested probability projects.

1. Read Example E Bayesian Inference, Rice page 94-95.

Re-work the problem using a $\operatorname{Beta}(\alpha, \beta)$ prior instead of the $\operatorname{Unif}(0,1)$ prior used in the example. Use

$$
\begin{equation*}
f_{\Theta}(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} \tag{1}
\end{equation*}
$$

for $0 \leq \theta \leq 1$. Determine the posterior density $f_{\Theta \mid X}(\theta \mid x)$.
2. Read Example C Random Walk, Rice page 140-142.

Write an R program to simulate Brownian Motion for $n=250$ values. Plot the values. Repeat 10 times. Compare your pictures to the last 250 closing values of a stock traded on the NYSE. Compare your pictures to the last 250 points of a major stock market average such as the DJIA.
3. Read Example B, rice page 154.

Simulate $\mathrm{n}=200$ values from the $\operatorname{BVN}(0,0,2,3, .75)$. Fit the linear model with only the slope coefficient. Compare the the estimate to the $\rho=0.75$.
4. Monte Carlo Integration.

Let $U_{1}, U_{2}, \ldots, U_{n}$ be independent uniform random values from the interval $[a, b]$. These values have density $f(u)=1 /(b-a)$ on that interval. Then

$$
\begin{equation*}
E\left[g\left(U_{i}\right)\right]=\int_{a}^{b} g(u) \frac{1}{b-a} d u \tag{2}
\end{equation*}
$$

so the original integral

$$
\begin{equation*}
\int_{a}^{b} g(x) d x \tag{3}
\end{equation*}
$$

can be approximated by $(b-a)$ times a sample mean of $g\left(U_{i}\right)$.
Use Monte Carlo integration to estimate the following integrals. Compare with the exact answers, if known.
(a)

$$
\int_{0}^{1} x d x
$$

(b)

$$
\int_{1}^{\pi} e^{x} d x
$$

(c)

$$
\int_{0}^{\infty} e^{-x} d x
$$

(d)

$$
\int_{0}^{1} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

(e)

$$
\int_{0}^{2} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

(f)

$$
\int_{0}^{3} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

(g)

$$
\int_{0}^{1} \int_{0}^{1} e^{-(x+y)^{2}}(x+y)^{2} d x
$$

5. If you have another idea for a project, please propose it during office hours for approval.
