Simulation Exercises:

- 1. (L.L.N) Demonstrate the Law of Large Numbers for the Normal Distribution.
 - Sample n = 1000 standard normal random values and put them in a vector z.
 - Write an S-plus function to compute the cumulative mean.
 - Create a vector x = [1,2,...,n].
 - Compute the cumulative mean vector y from z.
 - Make a convergence plot of y versus x.
 - Approximate the probability that $|y| > \varepsilon$.
 - Hint: Here is the splus code for the cummean function:

```
# cummean function: calculates the cumulative mean of a vector.
```

```
cummean <- function(x){
    n <- length(x)
    y <- numeric(n)
    z <- c(1:n)
    y <- cumsum(x)
    y <- y/z
    return(y)
}</pre>
```

- 2. (C.L.T.) Demonstrate the Central Limit Theorem for the Normal and Exponential Distributions.
 - Sample k = 1000 samples of size n = 30 from the *Normal*(5,2).
 - Compute the mean of the k samples.
 - Draw a histogram of these samples.
 - Describe the shape of the histogram.
 - Do the above steps again with the $Exp(\lambda = \frac{1}{3})$.
- 3. Demonstrate the independence of the sample mean and variance when sampling from the *Normal*(*5*,*2*).
 - Sample k = 1000 samples of size n = 30 from the *Normal*(5,2).
 - Compute the sample mean and standard deviation of the k samples.
 - Plot the samples means versus the sample standard deviation.
 - Compute the correlation between the means and standard deviation.
 - Do the above steps again with the $Exp(\lambda = \frac{1}{3})$.