
Transformations of Standard Uniform Distributions

We have seen that the R function runif uses a random number generator
to simulate a sample from the standard uniform distribution UNIF(0, 1). All
of our simulations use standard uniform random variables or are based on
transforming such random variables to obtain other distributions of inter-
est. Included in the R language are some functions that implement suitable
transformations. For example, rnorm, rexp, rbeta, and rbinom simulate
samples from normal, exponential, beta, and binomial distributions, re-
spectively. Also, the function sample is based on simulated realizations
of UNIF(0, 1).

A systematic study of the programming methods required to transform
uniform distributions into other commonly used distributions involves tech-
nical details be beyond the scope of this book. (For a more extensive treat-
ment, see Chapter 3 of Fishman (1996).) However, if you are going do
simulations and trust the results, we feel you should have some idea how
such transformations are accomplished—at least in a few familiar and ele-
mentary cases. The purpose of this section is to provide some of the basic
theory and a few simple examples of transformations from uniform distri-
butions to other familiar distributions. Also, this discussion provides the
opportunity for a brief review of some distributions we will use later on.

EXAMPLE 1. A real function (transformation) of a random variable is
again a random variable. For example, if U ∼ UNIF(0, 1), then the linear
function X = g(U) = 4U +2 is a random variable uniformly distributed on
the interval (2, 6). That is, X ∼ UNIF(2, 6). The transformation g stretches
the distribution of U by a factor of 4 and then shifts it two units to the
right. Recalling that FU (u) = P{U ≤ u} = u, for 0 < u < 1, we have the
following formal demonstration. For 2 < x < 6,

FX(x) = P{X ≤ x} = P{g(U) ≤ x} = P{4U + 2 ≤ x}
= P{g−1(X) ≤ g−1(x)} = P{U ≤ (x− 2)/4} = (x− 2)/4.

Because the density function of a random variable is the derivative of its
cumulative distribution function (CDF), we see that, for 2 < x < 6, the
density function of X is

fX(x) = dF (x)/dx = x/4,

which is the density function of UNIF(2, 6).

In R, the second and third parameters of the function runif specify the
left and right endpoints, respectively, of UNIF(θ1, θ2), the uniform distribu-
tion on the interval (θ1, θ2). Thus each of the statements 4*runif(10) + 2,
4*runif(10, 0, 1) + 2, and runif(10, 2, 6) simulates 10 observations
from UNIF(2, 6). PROBLEM 1 asks you to consider a more general version
of this example. ♦

In EXAMPLE 1, we have found the CDF of the transformed random
variable, and then used the CDF to find its density function. This method
works in a large variety of situations. Next, we see that a particular nonlin-
ear transformation of a standard uniform random distribution is a member
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of the beta family of distributions. We leave the formal demonstration to
PROBLEM 2 and use a simulation and graphics to illustrate the effect of
the transformation.

EXAMPLE 2. Suppose U ∼ UNIF(0, 1) and X =
√

U . Then P{0 <
X < 1} = 1. Also, because the square root of a number in (0, 1) is larger
than the number itself, we know intuitively that the distribution of X must
concentrate its probability toward the right end of (0, 1). Specifically, the
method of EXAMPLE 1 shows that X has the cumulative distribution
function FX(x) = x2, and the density function fX(x) = 2x, for 0 < x < 1.
Recall that if Y ∼ BETA(α, β) then its density function is

fY (y) =
Γ(α + β)
Γ(α)Γ(β)

yα−1(1− y)β−1,

for 0 < y < 1, and positive parameters α and β. Here Γ denotes the
gamma function, which has Γ(n+1) = n! for positive integer n, and may be
evaluated more generally in R using gamma. Thus X =

√
U ∼ BETA(2, 1).

The following simulation shows what happens when one takes the square
root of randomly chosen points u in the ten intervals (0, 0.1], (0.1, 0.2],
through (0.9, 1). In R, the names of density functions of programmed dis-
tributions begin with the letter d: thus the functions dunif and dbeta in
the code above.

set.seed(1212)

m = 10000; u = runif(m); x = sqrt(u)

par(mfrow=c(1,2))

hh = seq(-.1, 1.1, length=1000); cutp = seq(0, 1, by = .1)

hist(u, breaks=cutp, prob=T, ylim=c(0,2), xlim=c(-.1, 1.1))

lines(hh, dunif(hh), lwd=2)

hist(x, breaks=sqrt(cutp), prob=T, xlim=c(-.1, 1.1))

lines(hh, dbeta(hh, 2, 1), lwd=2)

par(mfrow=c(1,1))

Graphical results are shown in FIGURE A. Each bar in each histogram
represents about a thousand points, representing one tenth of the total
probability. Density functions of UNIF(0, 1) and BETA(2, 1) are superim-
posed on their respective histograms.

By taking different powers of a standard uniform random variable one
can obtain random variables with distributions BETA(α, 1) (see PROB-
LEM 2). More intricate methods are required to sample from some other
members of the distribution family BETA(α, β) (see PROBLEM 3). Opti-
mal methods for all cases are available in R as the function rbeta. Thus
either of the statements sqrt(runif(10)) or rbeta(10, 2, 1) could be
used to simulate 10 observations from BETA(2, 1), but the latter code
is more convenient because it can be used for any member of the beta
family. ♦

Now we summarize what we have seen so far.

• In EXAMPLE 1, the CDF of X is FX(x) = (x− 2)/4, for 2 < x < 6.
The inverse of the CDF is called the quantile function. Here it is
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F−1
X (u) = 2 + 4u, obtained by solving FX(x) = u for x in terms of u.

This is the function g we used to transform U ∼ UNIF(0, 1) to get the
random variable X = g(U) ∼ UNIF(2, 6).

• In EXAMPLE 2, the CDF FX(x) = x2, is used to obtain fX(x) = 2x,
for 0 < x < 1. Thus X has quantile function F−1

X (u) =
√

u, which
is the function g used to transform U ∼ (0, 1) to get the the random
variable X ∼ BETA(2, 1).

Suppose we want to simulate values from a distribution whose quan-
tile function is known. A general principle is that this quantile function
is the function g such that X = g(U) has the desired distribution, where
U ∼ UNIF(0, 1). Specifically, in the next example, we want to simulate
observations X ∼ EXP(1), the exponential distribution with rate 1. Ac-
cordingly, we find the quantile function of EXP(1) and use it to transform
observations from UNIF(0, 1).

EXAMPLE 3. Throughout this example let x > 0 and 0 < u < 1.
We wish to simulate observations from the distribution EXP(1), which has
density function f(x) = e−x and CDF F (x) = 1−e−x. Solving u = 1−e−x

for x in terms of u, we have the quantile function F−1(u) = − ln(1− u).
Thus X = − ln(1−U) ∼ EXP(1). Because 1−U ∼ UNIF(0, 1) it is simpler
to simulate observations from this exponential distribution as X = − ln U
(see PROBLEM 1).

The following R code demonstrates that a histogram of 100 000 observa-
tions generated in this way very nearly fits the density function of EXP(1),
as seen in FIGURE B. Furthermore, the mean and standard deviation of
the simulated values are both nearly 1, which is the mean and standard
deviation of the distribution EXP(1).

set.seed(1234)

m = 100000; u = runif(m); x = -log(u)

hist(x, prob=T)

xx = seq(0, max(x), length=100)

lines(xx, dexp(xx, 1), lwd=2)

mean(x); sd(x)

> mean(x); sd(x)

[1] 0.9988505

[1] 0.9984966

For most purposes, any of the following statements could be used to sam-
ple 10 observations from EXP(1): -log(runif(10)), qexp(runif(1), 1),
or rexp(10, 1). The second statement works because qexp (with second
parameter 1) is the quantile function of EXP(1). (PROBLEM 4 uses the
quantile transformation to sample from EXP(1/2).) However, the method
using rexp is preferable because it uses an algorithm that is technically
superior to our log-transform method, especially in its treatment of very
large simulated values. ♦

So far, all of our examples have dealt with continuous distributions.
Now we turn to an example where we sample from a binomial distribution.
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EXAMPLE 4. According to genetic theory the probability that any one
offspring of a particular pair of guinea pigs will have straight hair is 1/4.
Suppose we want to simulate births of six offspring. That is, we want to
simulate one realization of X ∼ BINOM(6, 1/4). One way to do this is to
simulate six observations from UNIF(0, 1). The probability that any one of
these uniform observations is less than 1/4 is 1/4. So X can be simulated
as the sum of six logical variables, where FALSE is interpreted as 0 and TRUE
as 1: sum(runif(6) < 1/4)). The sample function is also programmed to
use runif. So sum(sample(c(0,1), 6, repl=T, prob=c(3/4, 1/4)) is
an equivalent way to simulate X as a sum.

Because R defines the quantile function for a discrete random vari-
able in just the right way, one can use the quantile function approach:
qbinom(runif(1), 6, 1/4). The the second method has the advantage of
requiring only one random value from UNIF(0, 1), while the first—somewhat
wastefully—requires six. In this case, it turns out that the quantile trans-
form method is exactly equivalent to rbinom(1, 6, 1/4).

For a discrete random variable X, R defines F−1
X (u) as the minimum

of the values x such that FX(x) ≥ u. The left panel of FIGURE C shows
the CDF of BINOM(6, 1/4), where the vertical reference segments (dotted)
represent individual binomial probabilities P{X = i}, i = 0, 1, . . . , 6. The
right panel shows the corresponding quantile function, where the horizon-
tal segments of the function (heavy) represent these same probabilities.
PROBLEM 5 shows R code for a simplified version of this figure. ♦

In practice, when available, it is best to use random functions pro-
grammed into R (for example, rbeta, rbeta, rbinom) because they im-
plement algorithms that are fast and accurate. However, some useful dis-
tributions are not programmed into the base package of R. It may be pos-
sible to use the quantile transformation of standard uniform to simulate
observations from such a distribution.

EXAMPLE 5. The Pareto family of distributions is sometimes useful
in economics, actuarial science, geology, and other sciences, but it is not
included the base package of R. One member of this family has density
function f(x) = 3/x4 and CDF F (x) = 1 − x−3, for x > 1; mean 1.5 and
variance 0.75. The following R code simulates a sample of 5000 observations
from this distribution.

set.seed(123)

m = 5000; kap = 3

xx = seq(1, 10, length=1000)

pdf = kap/xx^(kap+1)

x = (1 - runif(m))^(-1/kap)

mean(x); var(x)

cutp=seq(0, max(x)+.5, by=.5)

hist(x[x<10], prob=T); lines(xx, pdf)

> mean(x); var(x)

[1] 1.492558

[1] 0.7048778
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FIGURE D shows a histogram of the results (except for the six obser-
vations that exceed 10) along with the density function. ♦
Transformations Involving Standard Normal Distributions

Normal distributions play an important role in probability and statis-
tics, and so it is important to know how to simulate samples from normal
distributions. The R function rnorm samples from the standard normal
distribution. At the end of this section we indicate how to transform stan-
dard uniform observations into standard normal ones. In the first example
below, we look at some relationships between standard normal and other
distributions.

EXAMPLE 6. If Z ∼ NORM(0, 1), then X = Z2 ∼ CHISQ(1), that is,
the chi-squared distribution with one degree of freedom. Also, if Z1 and
Z2 are independently standard normal, then Q = Z2

1 + Z2
2 ∼ CHISQ(2) =

EXP(1/2), where E(Q) = 2 and V(Q) = 4. These are standard results
from probability theory used in mathematical statistics. Formal proofs,
not shown here, use transformation theory or moment generating functions.
We illustrate these results via simulations.

set.seed(12)

m = 10000; z1 = rnorm(m); z2 = rnorm(m)

x = z1^2; q = z1^2 + z2^2

par(mfrow=c(2,1))

mx=max(x, q); xx = seq(0, mx, length=1000)

hist(x, prob=T, ylim=c(0,.7), xlim=c(0, mx), main="CHISQ(1)")

lines(xx, dchisq(xx, 1), lwd=2)

hist(q, prob=T, ylim=c(0,.7), xlim=c(0, mx), main="CHISQ(2)")

lines(xx, dexp(xx, 1/2))

lines(xx, dchisq(xx, 2), lwd=2, lty="dashed")

par(mfrow=c(1,1))

mean(x); var(x)

mean(q); var(q)

> mean(x); var(x)

[1] 1.018115

[1] 2.054014

> mean(q); var(q)

[1] 2.023093

[1] 4.118364

Graphical results are shown in FIGURE E. In the lower panel, the double
plotting with two line styles shows that the density functions of EXP(1/2)
and CHISQ(2) are the same. ♦

The following example illustrates the idea behind the most common
method of generating standard normal random variables from standard
uniform random variables.

EXAMPLE 7. Suppose an archer shoots arrows at a distant target. She is
aiming at the bull’s eye, which we take to be the origin of a plot, but the hits
are subject to random error. We model the vertical and horizontal displace-
ments from the origin as independent standard normal random variables
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Z1 and Z2. We know from EXAMPLE 6 that each arrow hits at a random
distance D =

√
Z2

1 + Z2
2 from the origin, where D2 = Q ∼ EXP(1/2).

Now consider a line through the arrow’s position to the origin, and the
angle Θ it makes with the positive Z1-axis measured in degrees counter-
clockwise. Intuitively, it seems that Θ ∼ UNIF(0, 360), which is illustrated
by the following simulation. In the code below, the arctangent takes values
between −90 and 90 degrees. Adding 180 degrees precisely when Z1 is neg-
ative completes the circle from −90 to 270 degrees, and taking the resulting
value modulo 360 (code %%) adjusts the values to lie in the interval (0, 360).
The resulting graph is shown in Figure F.

set.seed(1212)

m = 10000

z1 = rnorm(m); z2 = rnorm(m)

par(mfrow=c(2,1))

# squared distance from origin

d2 = z1^2 + z2^2

hist(d2, prob=T)

dd = seq(0, max(d2), length=1000)

lines(dd, dchisq(dd, 2))

# angle in degrees (counterclockwise from right)

th = ((180/pi)*atan(z1/z2) + 180*(z1<0)) %% 360

hist(th, prob=T)

tt = seq(0, 360, length = 1000)

lines(tt, dunif(tt, 0, 360))

par(mfrow=c(1,1))

Thus the position of the hit can be modeled in polar coordinates by
using two standard uniform random variables:

• The angle can be simulated as a linear transformation of a simulated
observation from a standard uniform distribution (see EXAMPLE 1
and PROBLEM 1).

• The distance from the origin is the square root of an exponential ran-
dom variable, and that exponential random variable can be obtained
as a log transformation of a standard uniform (see EXAMPLE 3 and
PROBLEM 4).

Conversion from polar to rectangular coordinates reverts to the two inde-
pendent standard normal random variables with which we started. This
procedure of simulating two independent standard normal observations
from two simulated independent standard uniform ones is known as the
Box-Muller transformation. It is explored further in PROBLEM 9. ♦
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PROBLEMS

1. General linear transformation. Let U ∼ UNIF(0, 1) and X = aU + b,
where a 6= 0. Use the method of EXAMPLE 1 to find the distribution of X.
In particular, what is the distribution of Y = 1− U?

2. Let U ∼ UNIF(0, 1). Use the method of EXAMPLE 1 to find the density
function of X in parts (a) and (b). Be sure to specify the interval on which
each density function takes positive values.

a) As in EXAMPLE 2, let X =
√

U . Show formally that X ∼ BETA(2, 1).

c) In general, if X = U1/α, where β > 0, show that EXP ∼ BETA(α, 1).

c) Modify the R code in EXAMPLE 2 to illustrate part (b) with α = 2.
Write a suitable caption for the resulting figure.

3. (Intermediate) Acceptance-rejection sampling. Sometimes the quantile
function is difficult or impossible to find or to express in closed form. Here
we explore a possible alternative method of sampling from such a distribu-
tion. Suppose we wish to sample from the distribution BETA(2, 2).

a) Sketch the density function of this distribution, and show that the
rectangle with diagonal corners at (0, 0) and (1, 1.5) contains the non-
negative part of the density curve. Also, find the mean and variance
of this distribution.

b) We generate random points within the rectangle of part (a), accepting
those that fall beneath the density function. The x-coordinates of the
accepted points form the simulated sample. Run the R code below
and explain the purpose of each statement. For your run, what is the
size of the simulated sample?

al = 2; be = 2; m = 600000

h = runif(m); v = runif(m, 0, 1.5)

x = h[v < dbeta(h, al, be)]

hist(x, prob=T)

xx = seq(0, 1, length=1000)

lines(xx, dbeta(xx, al, be))

length(x); mean(x); var(x)

4. Consider the distribution EXP(1/2). That is, the exponential distribu-
tion with rate 1/2 and mean 2.

a) Write the density function of this distribution. Find its quantile func-
tion.

b) Simulate 10 000 observations from this distribution.

c) Modify the R code of EXAMPLE 3 to make a histogram of the ob-
servations in part (b). making a figure similar to FIGURE B.
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5. Run the R code below to make a somewhat simplified version of FIG-
URE C. Explain the code. (In plot, paramter type="s" indicates a step
graph.)

par(mfrow=c(1,2))

xx = seq(-.5, 6.5, length=1000)

plot(xx, pbinom(xx, 6, 1/4), type="s",

xlab="Successes", ylab="CDF")

qq = seq(0, 1, length=1000)

plot(qq, qbinom(qq, 6, 1/4), type="s",

xlab="Cum Prob", ylab="Quantile")

par(mfrow=c(1,1))

6. Consider the distribution with density function f(x) = 0.8 + 1.2x, for
0 < x < 1. Use integration to find the CDF, and then find the quantile
function. Use the quantile transformation to simulate 100 000 observations
from this distribution. Compare the mean and standard deviation of your
observations with the mean and standard deviation of this distribution.

7. If Z1, . . . , Z5 are independently distributed standard normal random
variables, then Q = Z1+· · ·+Z5 ∼ CHISQ(5). Simulate 10 000 observations
from this distribution using the R function rnorm. Make a histogram of the
resulting observations and superimpose the density function of CHISQ(5)
on it.

8. In EXAMPLE 7, suppose one arrow hits 2 units to the right of the
origin (bull’s eye) and 1 unit above, so that Z1 = 2 and Z2 = 1. Show that
D = 1.73 and Θ = 26.6 degrees. What if Z1 = −2 and Z2 = 1?

9. Box-Muller Transformation. Let U1 and U2 be independent observations
from UNIF(0, 1). Then transform the joint distribution of (U1, U2) to the
disjoint distribution of (Z1, Z2) according to the Box-Muller transforma-
tion, expressed by the following equations.

Z1 =
√
−2 ln U1 sin 2πU2,

Z2 =
√
−2 ln U1 cos 2πU2.

The R code below uses this transformation to simulate 2500 pairs of stan-
dard normal values (5000 altogether). These 2500 points are plotted in
the left panel of the resulting figure. Then 2500 pairs of standard normal
values are generated with the R function runif and plotted in the right
panel. Because rnorm also also implements the Box-Muller transformation
it is not surprising that the two plots are very similar.

set.seed(1212)

m = 2500; u1 = runif(m); u2 = runif(m)

z1.BoxM = sqrt(-2*log(u1))*sin(2*pi*u2)

z2.BoxM = sqrt(-2*log(u1))*cos(2*pi*u2)

z1.rnorm = rnorm(m); z2.rnorm = rnorm(m)

par(mfrow=c(1,2))

plot(z1.BoxM, z2.BoxM, pch=20, xlim=c(-4,4), ylim=c(-5,5))

plot(z1.rnorm, z2.rnorm, pch=20, xlim=c(-4,4), ylim=c(-5,5))

par(mfrow=c(1,1))
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10. Let Z = U1 + U2 + · · · + U12 − 6, where the Ui are independent and
identically distributed (iid) as UNIF(0, 1).

a) Show that E(Ui) = 1/2 and V(Ui) = 1/12. Thus argue that E(Z) = 0
and V(Z) = 1. Because Z is based on a sum of iid random variables
the Central Limit Theorem, discussed in the next chapter, indicates
that Z may be nearly normal—and, in view of its mean and variance,
nearly standard normal. As we see below, the agreement with a stan-
dard normal distribution is reasonably good. Before computers could
easily do transcendental functions this method was sometimes used
to get one (roughly) standard normal observation from 12 standard
uniform observations.

b) Run the R code below to simulate 1000 “standard normal” random
variables and test agreement with a normal distribution. Reasonably
good fit of the histogram to the density curve in the left panel of
the resulting figure is a good indication of normality. A more precise
assessment of the fit to normality appears in the right panel. If the
points in the quantile-quantile (Q-Q) plot are essentially linear that
indicates a good fit to normality. The P-value of a Kolmogorov-
Smirnov test of goodness-of-fit is also shown in the right panel; a value
above 5% indicates that no significant evidence against normality has
been found. Make several different runs and report your findings.

m = 1000; n = 12

u = runif(m*n); DTA = matrix(u, nrow=m)

z = rowSums(DTA) - 6

par(mfrow=c(1,2))

mn = min(-3.8, min(z)); mx = max(3.8, max(z))

hist(z, prob=T, ylim=c(0,.42), xlim=c(mn,mx), col="wheat")

zz = seq(mn, mx, length=100)

lines(zz, dnorm(zz), col="blue", lwd = 2)

qqnorm(z, datax=T, ylim=c(mn, mx))

pval = round(ks.test(z, pnorm)$p,2)

text(1.5, -2.5, paste("KS.P-val =",pval))

par(mfrow=c(1,1))

c) The fit assessed in part (b) cannot be absolutely perfect. What is the
probability that Z, as simulated by the program in part (b), will lie in
the interval [−6, 6]? What is the probability a true standard normal
observation will lie in this interval?
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