## Conditional Example

## Particle Counter

A particle counter is imperfect and independently detects each incoming particle with probability $p$. If the distribution of the number of incoming particles in a unit of time is a Poisson distribution with parameter $\lambda$, what is the distribution of the number of counted particles?

Let $N=\#$ of incoming particles and $X=\#$ counted.

1. What is $P(X=k \mid N=n)=$ ?
2. What is $P(N=n)$ ?
3. Compute $P(X=k)$.

Is the conditional probability a regression?

```
### imperfect particle counter
lam = 10
p = 0.9
# probability distribution
len = 5
z = matrix(0,1+len,1+len)
for(i in 0:len){
        for(j in 0:i){
            z[1+j,1+i] = dbinom(j,size=i,prob=p)
    }
}
z
z.sum = apply(z,2,sum)
z.sum
x.mean=0
for(i in 1:len){
        x.mean = c(x.mean,i*p)
}
x.mean
for(i in 0:len){
    X11()
    plot(z[,1+i],type="h")
}
# simulation, how to estimate p using linear regression through the
# origin
```

```
B = 1000000
n = rpois(B,lam)
x = rbinom(n=B,size=n,prob=p)
plot(n,x,main="Counts detected vs Counts emitted, with E[X|N]")
x.fit = lm(x ~ 0+n)
summary(x.fit)
abline(x.fit)
```

\# Note that the estimated regression slope is very close to the true p

