Extra Credit

Direct proof that \bar{X} and S^2 are independent when sampling from the $N(\mu, \sigma^2)$ distribution.

Let X_1, X_2 independent $N(\mu, \sigma^2)$ random variables. (A random sample of size n = 2.)

- 1. Show that $Y_1 = X_1 + X_2$ and $Y_2 = X_2 X_1$ are independent.
- 2. What is the distribution of Y_1 ? What is the distribution of Y_2 ?
- 3. Show that $W_1 = \frac{1}{2}Y_1$ and $W_2 = \frac{1}{2}Y_2$ are independent. Note:

$$W_1 = \frac{1}{2}Y_1$$
$$= \frac{1}{2}(X_1 + X_2)$$
$$= \bar{X}$$

and

$$W_{2} = \frac{1}{2}Y_{2}$$

$$= \frac{1}{2}(X_{2} - X_{1})$$

$$= \frac{1}{2}X_{2} - \frac{1}{2}X_{1}$$

$$= X_{2} - \frac{1}{2}X_{1} - \frac{1}{2}X_{2}$$

$$= X_{2} - \left(\frac{X_{1} + X_{2}}{2}\right)$$

$$= X_{2} - \bar{X}$$

(So \overline{X} and the n-1 deviations from the sample mean are independent.)

- 4. What is the distribution of W_1 ? What is the distribution of W_2 ?
- 5. Show that since W_1 and W_2 are independent that $W_3 = X_1 \overline{X}$ is also independent of W_1 .
 - Note:

$$X_1 - \bar{X} + X_2 - \bar{X} = 0$$

(So \bar{X} and the first deviation $X_1 - \bar{X}$ are also independent.)

- 6. Argue that \bar{X} and $S^2 = \frac{1}{n-1} \sum_{i=1}^{2} (X_i \bar{X})^2$ are independent for a random sample of size n = 2 from the $N(\mu, \sigma^2)$ distribution.
- 7. What is the distribution of \bar{X} ? What is the distribution of S^2 ?
- 8. Develop the same results for n = 3.
- 9. Develop the same result for a sample of size n.