Homework Set No. 2

Answer the following questions. Please provide a type in copy of the solution.

- Q#1: A protein database contains 10 protein sequences. 4 proteins in this database are homologues and form a protein family:
 - a) How many different possible ways are there of forming this family.
 - b) Three other proteins also constitute a family. How many different ways are there of placing the 10 proteins into the two families.
- Q#2: The PFAM profile database contains 2700 domain families:
 - a) How many different four domain protein are possible.
 - b) How many four domain proteins are possible in which no two domains in the proteins are homologous to each other.
- Q#3: Consider only standard nucleotides (A,T,G, or C) and standard amino acids (20 of them)
 - a) How many unique 30-base long DNA sequences are there?
 - b) How many unique 10-residue long peptide sequences are there?
 - c) Considering that the correspond DNA sequence of a 10-residue long peptide is 30 nucleotide long, should the two numbers obtained in a.) and b.) be the same? If not, why?
- Q#4: How often an TaqI site would be expected to appear by chance in a random sequence.
- Q# 5: A base calling procedure is very acurate in determining the nucleotides in a DNA sequence, in that it correctly identifies each base with high probability and only rarely misclassifies bases. Let E_A, E_C , E_G and E_T be the events that base under study is identified as an A, C, G and T respectively, and let F_A , F_C, F_G and F_T be the events that base under study is actually an A, C, G and T respectively. Suppose that prior to any analysis being carried out it is assumed that:

$$p(F_A) = p_A = 0.30 \quad p(F_C) = p_C = 0.20 p(F_G) = p_G = 0.20 \quad p(F_T) = p_T = 0.30$$

and the conditional probabilities of (mis) classification of a base, give that its actual type are given by the following tables

		Is Called As					
		А	\mathbf{C}	G	Т		
	А	0.900	0.025	0.025	0.050		
The Base	\mathbf{C}	0.025	0.850	0.100	0.025		
	G	0.025	0.100	0.850	0.025		
	Т	0.050	0.025	0.025	0.900		

so that, for example, from the top row

$$p(E_A|F_A) = 0.900$$
 $p(E_C|F_A) = p(E_G|F_A) = 0.025$ $p(E_T|F_A) = 0.05$

and so on.

i). Using the Total probability formula, compute the probability that an unknown base under analysis is classified as $i \in \{A, C, G, T\}$, that is, compute

$$p(E_i) = \sum_{j \in \{A, C, G, T\}} p(E_i | F_j) p(F_j) \quad \text{for each } i \in \{A, C, G, T\}$$

ii). Compute, using Bayes Theorem or the conditional probability formula, the conditional probability that a base is actually an A, given that is classified as an Ai.e., $p(F_A|E_A)$.

Compute also the three conditional probabilities that a base is actually an A, given that it classified as C.

Q#6: Count data from two DNA sequences was collected

	Nucleotide							
Sequence	А	С	G	Т	Total			
1	250	140	180	230	800			
2	320	270	310	300	1200			
Total	570	410	490	530	2000			

A test of the null hypothesis H_0 , that the marginal probabilities of the four nucleotides are identical for both sequences, is required.

i). Complete the table of expected counts

$$e_{ij} = \frac{n_{i.}n_{.j}}{n}$$
 $i = 1, \dots, r, \ j = 1, \dots, c$

Assuming H_0 is true, where n_{i} is the total of the i^{th} row, n_{j} is the total of the j^{th} column, and n is the total number of observations.

ii). Compute the Chi-squared statistic χ^2 . Recall that, here, the test statistic is defined as

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^4 \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

iii). Carry out a test of H_0 at the significance level of $\alpha = 0.01$. Note: You could verify your result by using Minitab or R. The R-code to solve this problem is:

$$\begin{split} & x < -c(250, 140, 180, 230, 320, 270, 310, 300) \\ & data.matrix < -matrix(x, ncol = 4, byrow = TRUE) \\ & c < -colSums(data.matrix) \\ & r < -rowSums(data.matrix) \\ & gt < -sum(data.matrix) \\ & p < -matrix(0, ncol = 4, nrow = 2) \\ & for(i \ in \ 1: 2) \\ & \{for(j \ in \ 1: 4) \\ & \{p[i, j] < -c[j] * r[i]/gt^2\} \} \\ & chi.test < -chisq.test(data.matrix, p) \end{split}$$

Here some information about the chi-square functions available in R: dchisq(x, df, ncp = 0, log = FALSE) pchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) rchisq(n, df, ncp = 0)Arguments: x, q: vector of quantiles. p: vector of probabilities. n: number of observations. If 'length(n) > 1', the length is taken to be the number required. df: degrees of freedom. ncp: non-centrality parameter. For 'rnchisq', 'ncp = 0' is the only possible value. \log , \log .p: logical; if TRUE, probabilities p are given as log(p). lower.tail: logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].