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Autocorrelation and Autoregression
Autocorrelation

At first glance, autocorrelation sounds like a something that a statistician would want to find when working with multiple variables on a time series.  In fact, autocorrelation is a problem that arises from data that would seem to be related to one another.  This is usually a problem that is encountered while doing time-series regression analysis.  The term autocorrelation is used to describe instances where the errors in forecasts are correlated over time.  In other words, there is a correlation between the errors in periods t and periods t-1.  For example, the error on February 1st may be correlated with the error on January 1st.  Another term that is frequently used for autocorrelation is serial correlation.
Autocorrelation is considered undesirable because one of the classic assumptions of regression is that the error terms are not correlated with one another, at least in such a way that causes serious consequences.  When these error terms are correlated, the results of your regression model may be useless do to some errors that rely on this assumption.  For example, your standard deviation may be skewed.  Also, taking the mean square error value may result in underestimated error variance, allowing for gross misinterpretation of results.  

These problems are important to address, because your results may be called into question if you do not test for autocorrelation.  Such an example can be found at http://www.steveverdon.com/archives/statistics/001797.html, where the author, Steve Verdon,  calls into question the relationship between terror warnings and President Bush’s approval ratings that are suggested by another statistician.  Steve suggests that the lack of autocorrelation information in the paper is an unethical use of simple regression for political gain.  
Now that we understand that autocorrelation can cause unwanted side effects, we should discuss methods for testing our data for autocorrelation and way of reducing the factor it plays in our analysis.  The standard method for testing autocorrelation is the Durbin-Watson test.  
The Durbin-Watson Test
The formula for the Durbin-Watson test is as follows:
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Where: 

D represents the Durbin-Watson statistic 
n represents the number of observations
e represents the error for t time period

Like many other special statistics, we need a table to help us interpret the meaning of the Durbin-Watson statistic (D).  This table is called the Critical Values for the Durbin-Watson Test table.  Among other places, this table can be found in appendix A, table A.9 in the book Business Statistics for Contemporary Decision Making (Ken Black, ©2004, Leyh Publishing).  This table gives us what we call “critical values” for D (DL and DU).  You will notice that the critical values depend on the number of independent variables as well as n- (the number of observations). 
Our null hypothesis H0 is that there is no autocorrelation.  If D lies between our critical values, we cannot reject the null hypothesis.  Also, if D lies between DL and DU, the test is indeterminate and we cannot reject the null hypothesis.  Here is an illustration from a slide show given by Christopher Dougherty in 2000 that may help clear things up.

[image: image2.png]positive no negative
autocorrelation autocorrelation autocorrelation

0 d d, 2 4
1.35 1.59 2.41 265




In this example, the critical points are also shown for negative autocorrelation.  This is not found in our tables, but it is easy to determine the critical points.  We just flip the chart symmetrically over the number 2.  Negative autocorrelation is uncommon, and will not be discussed further in this paper.  As you can see from the chart, if D falls between 0 and DL, we can reject the null hypothesis H0 and find that there is indeed autocorrelation.
In the example that follows, we will create a regression model to predict the consumer price index (CPI) of food by using the CPI of shelter as an indicator. Here is our data set:

	Year     Food    Shelter

1974     14.3       9.6

1975      8.5        9.9

1976      3.0        5.5

1977      6.3        6.6

1978      9.9      10.2

1979    11.0      13.9

1980      8.6      17.6

1981      7.8      11.7

1982      4.1        7.1

1983      2.1        2.3

1984      3.8        4.9

1985      2.3        5.6

1986      3.2        5.5



	Year     Food    Shelter

1987      4.1        4.7

1988      4.1        4.8

1989      5.8        4.5

1990      5.8        5.4

1991      2.9        4.5

1992      1.2        3.3

1993      2.2        3.0

1994      2.4        3.1

1995      2.8        3.2

1996      3.3        3.2

1997      2.6        3.1

1998      2.2        3.3

1999      2.1        2.9


Luckily for us, MINITAB has a built in function for getting the Durbin-Watson statistic so we don’t have to plug the numbers into the formula manually.  Below is the MINITAB output.  Pay special attention to the last line.

Regression Analysis: Food versus Shelter 

The regression equation is

Food = 0.628 + 0.690 Shelter

Predictor    Coef  SE Coef     T      P

Constant   0.6283   0.7583  0.83  0.416

Shelter    0.6905   0.1055  6.54  0.000

S = 2.01754   R-Sq = 64.1%   R-Sq(adj) = 62.6%

Analysis of Variance

Source          DF      SS      MS      F      P

Regression       1  174.33  174.33  42.83  0.000

Residual Error  24   97.69    4.07

Total           25  272.02

Unusual Observations

Obs  Shelter    Food     Fit  SE Fit  Residual  St Resid

  1      9.6  14.300   7.257   0.539     7.043      3.62R

  7     17.6   8.600  12.781   1.273    -4.181     -2.67RX

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 1.11323

Since the Durbin-Watson statistic is 1.11323 and we used simple linear regression (the value of k, our independent variable = 1), our critical points are DL = 1.30 and DU = 1.46.  Since our Durbin-Watson statistic is below the DL critical point, we reject the null hypothesis.  
By looking at the graph below, we can see cycles in the residuals (errors).  This is often indicative of autocorrelation.  
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Now that we have determined that there is autocorrelation, we need to see if we can salvage our data.  One of the main reasons we see autocorrelation is that we have left out an important variable.  In this case, there could be many other variables that are tied to the CPI of food and the CPI of shelter such as the CPI for energy. Including these variables in the regression model may help us decrease the autocorrelation and give us more accurate predictors.  Another way to overcome autocorrelation is to use autoregression models instead, which take advantage of  the relationship of current values to previous values.

Autoregression  
Autoregression is used for forecasting time series data, and takes advantage of situations where we can attempt to predict new values from the old.  An example that should drive home the point can be found in the stock market.  If the stock CMCSA (Comcast Corp. Series A stock) closed .20 (20 cents) higher today than it did yesterday, we may expect the same stock to close another .20 higher tomorrow.  This oversimplified example obviously has some flaws, but there are autoregression techniques that can overcome some of the flaws and provide more accurate forecasting.
The book Business Statistics for Contemporary Decision Making (Ken Black, ©2004, Leyh Publishing) defines autoregression as a multiple regression technique in which the independent variables are time-lagged versions of the dependant variables. You can choose to lag the independent variable for the number of time periods that you find appropriate.  For example, you may lag the independent variable by one year, or three months, depending on the application.

MINITAB has a function called ARIMA.  This stands for Autoregressive Integrated Moving Average.  This function allows very specific tweaking of the seasonality and other factors in autoregression.  However, we can do a simple test just by shifting the data several times to see how accurate past data is for forecasting.
	Year
Food
X1
X2
X3

1974
14.3
*
*
*

1975
8.5
14.3
*
*

1976
3.0
8.5
14.3
*

1977
6.3
3.0
8.5
14.3

1978
9.9
6.3
3.0
8.5

1979
11.0
9.9
6.3
3.0

1980
8.6
11.0
9.9
6.3

1981
7.8
8.6
11.0
9.9

1982
4.1
7.8
8.6
11.0

1983
2.1
4.1
7.8
8.6

1984
3.8
2.1
4.1
7.8

1985
2.3
3.8
2.1
4.1

1986
3.2
2.3
3.8
2.1
	Year
Food
X1
X2
X3

1987
4.1
3.2
2.3
3.8

1988
4.1
4.1
3.2
2.3

1989
5.8
4.1
4.1
3.2

1990
5.8
5.8
4.1
4.1

1991
2.9
5.8
5.8
4.1

1992
1.2
2.9
5.8
5.8

1993
2.2
1.2
2.9
5.8

1994
2.4
2.2
1.2
2.9

1995
2.8
2.4
2.2
1.2

1996
3.3
2.8
2.4
2.2

1997
2.6
3.3
2.8
2.4

1998
2.2
2.6
3.3
2.8

1999
2.1
2.2
2.6
3.3


For X2 and X3, the R-Squared statistic is relatively low at 8.9%.  However, X1 has an R-Squared statistic of 51.8%, a much stronger indicator (although not strong enough to make people sit up and take notice.  As the R-Squared statistic rises, our level of confidence in the indicator increases, as in any regression forecasting exercise.
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