Statistics 32 Spring 1995
Simulating Discrete Random Variables

Binomial

One way to simulate a binomial random variable is to simulate the events of which
it is composed. If this binomial random variable has parameters n and p, then we can
independently simulate n events, each with probability p of being a success. The num-
ber of successes, then, would be the outcome of the binomial random variable. The code
listed below uses this method to create an integer valued function that returns the out-
come of the random variable: (Note that in this function and in all other code in this
discussion the type extended is used. This is a floating point variable type that is de-
fined in Turbo Pascal. It has about 20 significant digits and can range from 3.4 x 104932
to 1.1 x 10432, This provides for greater accuracy in some of these applications; this is
particularly neccessary in the Poisson function on the next page. I recommend that you
take advantage of any high precision real types that your compiler supports. In Fortran
and C the type double carries about 16 significant digits.)

function binomial(n : integer; p : double): integer;

var i : integer;
successes : integer;

begin
successes := 0;
for i := 1 to n do
if random < p then inc(successes);
binomial := successes;
end;
Geometric

Here again we will use the method of simulating the events that make up the ran-
dom variable. For a geometric random variable with parameter p we simulate indepen-
dent events, each with probability p of a success occurring, until we observe a success.
The number of tries it takes to get the first success is the outcome of the random vari-

able.

(function on next page)

function geometric(p : double): integer;

var 1 : integer;
success : boolean; (* becomes true if a success occurs *)

begin

success := false;

i:=0;

while not success do
begin
success := random < p;
i:=1+1;
end;

geometric := ij;

end;

Poisson

The listing below is a function that will return the outcome of a poisson random
variable with parameter A. We will not be able to discuss the method used here until
later in the course.

function poisson(lambda : double):longint;
var i : longint;

product : double;
compare : double;

begin

compare := exp(-lambda);

product := random;

i:=0;

while product > compare do
begin
product := product * random;
i:=1+1;
end;

poisson := i;

end;

HyperGeometric

(Homework #3, Additional Problem 5)

Application

The code listed below generates 1000 observations from a binomial random vari-
able with n = 20 and p = 0.10. It keeps track of the min and max of all the outcomes.
Also it keeps track of £129%z; and £129°z% and uses these to calculate the sample mean
(usually denoted by z) and the sample variance (usually denoted by s?). These have the
following computational formulas :

m 2
m . m 2 _ (B2
T = z:izlwl 32 _ Zi:lxi] m
m m—1

where here m = 1000. If m is large (1000 is fairly large) then these shouldn’t be to far
from the true mean and true variance (u = np and ¢* = np(1 — p)).

program GenerateDiscreteDistributions;

var x : double;
Min, Max : integer;
SampleMean, SampleVariance : double;
Sum, SumSq : double;
i : integer

(* insert random function here *)
(* insert binomial funciton here *)
begin

Randomize; (* Seeds Turbo Pascal’s random number generator *)
Min := 50;

Max := 0;

Sum := 0;

SumSq := 0;

For i := 1 to 1000 do

begin
x := Binomial(20,0.10);
Sum := Sum + x;
SumSq := SumSq + x * X;
if x < Min then Min := x;
if x > Max then Max := Xx;

end;

SampleMean := Sum/1000;

SampleVariance := (SumSq - (Sum * Sum)/1000)/1000;
Writeln(’Sample mean = ’, SampleMean:1:6);
Writeln(’Sample variance = ’, SampleVariance:1:6);
Writeln(’min = ’, Min:1:0);

Writeln(’max = ’, Max:1:0);

end.

