Introductory Guide

to
S-Plus

Final Version

B.D. Ripley
Professor of Applied Statistics,
University of Oxford

e-mail: ripley@stats.ox.ac.uk

24 August 1994

Preface

This guide was originally written for graduate studentsin Statistics at the University of Ox-
ford. Thefirst versionswere based closely on notes by Dr. Bill Venables of the Department
of Statisticsat the University of Adelaide, but have been updatedto reflect later versionsof S,
the extensionsof S-Plus and local facilities. Several sections, in particular 4, 6 and 11, remain
closeto Dr. Venables' original material. This guidewill no longer be updated, following the
publication of Venables & Ripley (1994). [See p. 1. Where that takes a significantly better
approach than earlier editions of these notes, the material formerly here has been dropped.]

Theguideisto S-Plus, but much of it will berelevantto usersof the underlyingS. Extensions
which areonly in S-Plus include dynamic graphics(§6.3, brush and spin) and the classical
statisticsfunctions(§9). Theterminology of thisguideisintendedto be precise, only referring
to S-Plus rather than S for featuresuniqueto S-Plus.

Thesenoteswerewritten for aparticul ar environment, S-Plus3.2 on Sun SparcStationsrunning
the Open Windows windowing system. You will find a number of differences depending on
your local environment. It will help to have thelibrary ripley available— it should beinthe
same sourceas these notes. It can be also be obtained by anonymous ftp from

markov.stats.ox.ac.uk (163.1.20.1)
infilepub/S/ripley.sh.Z. Itisavailablefromstatlib (see SectionA.2) as
send ripley from S
Alternatively, 1ibrary (MASS) from Venables& Ripley (1994) can be used.

Thisguidemay befreely copied and redistributedfor any educationa purpose (including com-
mercial courses) provided its authorship (B.D. Ripley and W.N. Venables) is clearly stated.
Where appropriate, asmall chargeto cover the costs of productionand distribution, only, may
be made.

B.D. Ripley,
University of Oxford,
24th August, 1994.



Contents ii
Contents
1 Introduction 1
1.1 StatingandFinishing . . . . . . . ... ... 1
12 GettingHelp . . . . . . . 2
1.3 HardcopyOutput. . . . . . . . . ... 3
2 Datasets 3
3 A First Session 5
4 Simple Data Manipulation 6
41 VeCtors. . . . . .. 6
4.2 Vector Arithmetic . . . . . . . ... 6
4.3 Generating Regular Sequencesof Numbers. . . . . . . . . ... .. ... .. 7
44 Logica Vectors. MissingValues . . . . . . . ... 8
45 CharacterVectors . . . . . . ... 8
4.6 Index Vectors. Selectingand Modifying Subsetsof aDataSet . . . . . . . . 9
A7 ATTAYS . . . 10
48 Lists . . . . . 11
49 DataFrames . . . . . . .. ... 12
5 ReadingdataintoS 14
5.1 Writingoutdata . . . . . . . .. ... 15
6 Graphics 16
6.1 Graphical Parameters . . . . . . . . ... 16
6.2 SomeBasic Plotting Functions. . . . . .. . ... ... 17
6.3 InteractionwithPlots . . . . . . .. ... ... 17
6.4 BrushandSpin. . . . . . . ... ... 18
6.5 Equally-scaledplots . . . . . .. ... 18

Contents iii
7 Statistical Summaries 20
7.1 Arithmetical Summaries . . . . . . . ... ... 20
7.2 Histogramsand Stem-and-Leaf Plots . . . . . . . . . ... ... ... .. 20
7.3 Boxplots . . . ... 21
8 Distributions 22
81 QQPlots . . . . .. 23
9 Classical Statistics 24
10 Handling Categorical Data 27
10.1 TheFunctiontapply(...) and RaggedArrays . . . . . . ... .. ... .. 28
11 Loopsand Conditional Execution 29
12 Writing Your Own Functions 30
13 Statistical Models 32
13.1 Model Formulas . . . . . . . ... 32
132 One-way Layouts . . . . . . . . . ... 33
13.3 Designed Experiments . . . . . . . ... ... 35
13.4 GenerdlizedLinearModels . . . . . . .. ... 39
13.5 Updating and SelectingModels . . . . . . . .. . ... ... 42
14 MultivariateAnalysis 43
Appendix
A Libraries 45
Al Libraryripley . . . . . . ... 46
A.2 Sourcesof Libraries . . . . . .. ... 46



Introduction 1

1 Introduction

S isadtatistical language developed at AT& T's Bell Laboratories. S-Plus is abinary distri-
bution of S, with added functions, produced by the StatSci Division of MathSoft in Seattle.
The S system wasradically re-designedin the 1988 release and known as‘New S . In August
1991 a new release of what is once again called S consisted of a moderate revision of ‘New
S together with far-ranging extensions. S-Plus 3.0 wasintroducedin late 1991, based on that
release of S, with numerous additional features. S-Plus 3.1 was released at the very end of
1992, and S-Plus 3.2 invery early 1994.

The main referencesare:

R.A. Becker, JM. Chambers and A.R. Wilks (1988) The NEW S language. Wadsworth &
Brooks/Cole.

J.M. Chambers and T.J. Hastie (1992) Satistical Modelsin S. Wadsworth & Brooks/Cole.

It is not the intention of this guide to replace the books. Rather these notes are intended as
abrief introductionto the capabilitiesof the S programming languageand to how to perform
some common statistical procedureswithin S. Usersof S-Plus will need to consult both books,
probably frequently. Both books contain some reference documentation, but the on-line ver-
sions (see§1.2) are later and definitive.

There also manualsfor S-Plus itself, whose organization differs from releaseto release.
Other booksinclude

W.N. Venables and B.D. Ripley (1994) Modern Applied Satistics with S-Plus. New York:
Springer ISBN 0-387-94350-1

which goesfar beyond the coverage of thisguide, including many topics (such asrobust statis-
tics, non-linear regressions, modern regression, survival analysis, tree-based models, time se-
ries and spatial statistics) not covered here, aswell asin greater depth on what is covered.

1.1 Starting and Finishing

To start S-Plus, type the command

machine) Splus

After ashort while (and, thefirst time, an initialization message) you get the S-Plus prompt!:
>

Thisiswaiting for input from you.

Technically S isafunctionlanguagewith avery simplesyntax. Likemost Unix based packages
itis casesensitive, so A and a are different variables. Elementary commands consist of either
expressionsor assignments. If an expression is given as a command, it is evaluated, printed,
and the valueis discarded?. An assignment also evaluatesan expression and passes the value

1which can be changed, but the default is assumed here
2Infactit iskeptin the (hidden) variable . Last.value and so can beretrieved from the ‘bin’.

1.2 Getting Help 2

to avariablebut theresult is not printed automatically. An expression can beassimpleas2 +
3 or acomplex function call. Assignmentsare indicated by the assignment operator <- or _.
(As thefirst needs two keystrokes, lazy typists use the second. However, thefirst is easier to
read.) For example,

> 2+3

[11 5

> mean(hstart)

[1] 137.9944

> m <- mean(Chstart); v <- var(hstart)

> m/sqrt(v)

[1] 3.174021

The [1] statesthat the answer is starting at the first element of a vector.

Commands are separated either by a semi-colon, ;, or by anewline. If acommand is not com-
plete at the end of aline, S will give a different prompt, namely

+

on second and subsequent lines and continueto read input until the command is syntactically
complete.

S can be extended by writing new functions, which then can be used exactly as built-in func-
tions (and can even replacethem). How to write your own functionsis covered in section 12.

1.2 Getting Help

S has an inbuilt help facility similar to the man facility of Unix. To get more informationon
any specific named function or dataset, for example mean, the command is

> help(mean)

For afeature specified by special characters, and in a few other cases (oneis ""swiss"), the
argument must be enclosed in double quotes, making it a ‘ character string’:

> help("[["™)

Help usesawindow which overlaysyour main window. The pager acceptsanumber of options,
including space for the next page and q to quit. (Other useful optionsare 1G to go to the top
and control-b to go back a page.) If you prefer, a separate help window (which can be left
up) can be obtained by the argument window=T. Another way to get helpisby

> 7mean

Short helpisgiven by thefunctionargs.

S-Plus aso hasawindow-based help facility, started by
> help.start(gui="openlook')

Click with the left mouse button on itemsto select categoriesand items. The help window can
be left up, or removed by



1.3 Hardcopy Output 3

> help.off()

It isnot advisableto quit S-Plus windows from the frame menu.

1.3 Hardcopy Output

Graphics are printed by holding down the right button on the graph menu in aopenlook()
window (see §6) and releasing over the print item. Thiswill print on the nearest laser printer
(or that selected by your PRINTER environment variable).

To record a session cut-and-pasteto a textedit window, then remove your mistakes (if any)
and save asa Unix file.

2 Datasets

Datasetsarestoredin adirectory ~/.Data. They arepermanent, so all theobjectsyou create
are retained until explicitly deleted. (As the directory name .Data beginswith . it will nor-
mally be hidden in file listingsfrom Unix by 1s.) If thereisa .Data directory in the current
directory when S isinvoked, that directory is used rather than ~/.Data. Thisprovidesone
way to organizeyour S, using separatedirectoriesfor each project.

In S, to get alist of names of the objects currently defined use the command
> objects()

Your own functions are also stored in .Data. To find out whether an object is a function or
dataset, and what isin it, just type its name at the prompt, e.g.

> stack.x
> plot

Thisprintsout thefunction, dataset, . . .. Inthelater versionsof S it may print ashort summary
of the object. To get the full details, use

> print.default(oObject)

When S looksfor an object, it searchesin turn through a sequenceof directoriesknown asthe
search list. Usually thefirst entry in the search list isthe .Data sub-directory of the current
working directory. The names of the directories currently on the search list can be found by
the function

> search()

The names of the objectsheld in any directory on the searchlist can be displayed by givingthe
1s function an argument. For example objects(2) liststhe contentsof the second directory
in the search list. Normally the second, third and fourth directoriesare built-in functions, and
thefifth, sixth and seventh contain standard datasets

Extra search directoriescan be added to thislist with the attach (. . . ) function and removed
withthedetach(...) function, detailsof which can be foundin the manualsor thehelp fa-

Datasets 4

cility. Note that attached directories are searched after the .Data directory in the order last
attached to first attached.

To remove obj ects permanently the functionrm is available:
> rm(x,y,z,in, junk,temp)

Thefunctionremove(...) can beused to remove objectswith non-standard names.

Warning

Objectsin your .Data directory will take precedence over system objects of the same name.
Thisisafrequentcauseof rather obscureerrors, and can causeapparently correct behaviour but
erroneousresults. Avoid using namessuchasc, s, t, glm, range, tree for your own
objects. If you get peculiar errors, clean up your .Data directory and try again!

S keepsarecord of commandsin the . Audit fileinthe .Data directory. Thisisahiddenfile
and can grow rather large. Use (from the Unix command line)

Splus TRUNC_AUDIT 0
occasionally to clean out the audit file entirely (or omit the 0 to keep the last 0.5Mb).



AFirst Session

3 A First Session

The sample session given below isintended to show by example some of the capabilitiesof the
system. Work through the session given by the commands on theleft of the page. Some clues
as towhat isgoing on are given at the right hand side of the page.

machiney, Splus

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

vV V V V V V V VvV

VvV V V V V V V V V V VYV V.Y

openlook()

library(ripley)

help(trees)

trees

attach(trees)

hist(diam)

hist(diam, nclass=10, probability=T)
help(hist)

stem(diam)

plot(diam, volume)

trees.lm <- lm(volume ~ diam)
summary(trees.lm)
anova(trees.lm)
abline(trees.lm)
identify(diam, volume, height)

par(mfrow=c(1,2))

plot(trees.lm)

par(mfrow=c(1,1))
qqnorm(residuals(trees.lm))
qqnorm(studres(trees.lm))
qqline(studres(trees.lm))
pairs(trees)

brush(cbind(diam, height, volume))

trees.1m2 <- 1lm(volume " diam + height)

Start the session.

Open the graphics window.

Add alibrary of functions and datasets.
useq to quit

Print out a data frame of the trees data
so that we can use names diam etc
Histogram as counts.

as probability density

Stem-and-leaf plot.

Scatter plot.

linear regression

summary of fit

andysis of variance table

plot line on scatter plot

Move mouse to plot and click with left button
to see what height is. Click middle button to
quit.

set up 1 row, 2 colsfor plots

plotsof fitted values and |residual g vsfitted val ue.
one plot again.

normal probability plot of residuals

and of Studentized residuas

line through quartiles

all pair-wise scatter plots

rotate pointsin 3D, select and de-select points.
Click onquit toend

multiple regression. Try functions as before

trees.1m3 <- 1lm(log(volume) ~ log(diam) + log(height))

detach("trees")

help(road)

attach(road)

plot(drivers, deaths)
plot(drivers, deaths, log="xy")
state <- row.names(road)
identify(drivers, deaths, state)
plot(fuel, deaths, log="xy")
identify(fuel, deaths, state)

to avoid any confusion

Find the ‘odd’ states.

road.mat <- cbind(drivers, fuel, deaths) Setupamatrix

pairs(road.mat)
brush(road.mat, rowlab=state, spin=F)

q()

Look at pattern of al three

Use mouse to highlight points and check their
identity. Then click onquit

Finish session

Smple Data Manipulation 6

4 Simple Data Manipulation

The basic dataobjectsin S are vectors, arrays, listsand data frames.

4.1 \Vectors

S operateson named data structures. The simplest such structureisthe vector, whichisasin-
gle entity consisting of an ordered collection of numbers. To set up a vector named x, say,
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the S command

> x <- ¢(10.4, 5.6, 3.1, 6.4, 21.7)

Thisisan assignment statement using thefunctionc (. . . ) taking an arbitrary number of vector
arguments and whose valueis the vector of its arguments.

A number occurring by itself in an expressionis taken as a vector of length one.

Assignments can a so be madein the other direction, using the obvious changein the assign-
ment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the valueis printed and lost. So now if we
were to use the command

> 1/x

the reciprocals of the five values would be printed (and, of course, the value of x would be
unchanged).

4.2 \ector Arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed
element-by-element. Vectors occurring in the same expression need not al be of the same
length. If they arenot, thevalueof the expressionisavector with the samelengthasthelongest
vector which occursin the expression. Shorter vectorsin the expression are recycled as often
as need be (perhapsfractionally) until they match thelength of the longest vector. In particular
aconstantis simply repeated. So with the above assignmentsthe command

> v K- 2%x +y + 1

generatesanew vector v of length 11 constructed by addingtogether, element-by-element, 2xx
repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

The elementary arithmetic operators are the usua +, -, *, / and ~ for raising to a power. In
addition all of the common arithmetic functions are available. log, 1og10, exp, sin, cos,
tan, sqrt, and so on, al have their usual meaning. max and min Select the largest and small-
est elements of an vector respectively. range is afunction whose value is a vector of length
two, namely c (min(x) ,max(x)). Theelement-by-element maximum and minimum of two or
more vectorsare given by pmax and pmin. length(x) isthenumber of elementsinx, sum(x)
givesthetotal of theelementsin x and prod (x) their product.



4.3 Generating Regular Sequences of Numbers. 7

Two statistical functionsare mean (x), which evaluatesto sum(x)/length(x) and var(x),
which gives the value sum((x-mean(x))~2)/(length(x)-1), the sample variance. If the
argumenttovar(...) isann x p matrix thevalueisap x p sample covariancematrix obtained
from regarding the rows as independent p-variate sample vectors.

sort (x) returnsavector of the same size as x with the elementsarranged in increasing order.
Other, moreflexible, sorting facilitiesare available(see order (. . . ) which producesa permu-
tation to do the sorting, and sort . 1ist).

4.3 Generating Regular Sequences of Numbers.

S has a number of facilitiesfor generating commonly used sequences of numbers. For ex-
ample 1:30 isthevector c(1,2,...,29,30). The colon operator has highest priority within
an expression, so, for example 2x1:15 isthe vector c(2,4,6,...,28,30). Putn <- 10 and
comparethesequences 1:n-1 and 1:(n-1).

The construction30: 1 may be used to generate a backwards sequence.

The function seq(...) isamore general facility for generating sequences. It has five argu-
ments, only some of which may be specifiedin any one call. Thefirst two arguments, if given,
specify the beginning and end of the sequence, and if these are the only two arguments given
theresult is the same as the colon operator. That is, seq(2,10) isthe same vector as2:10.

Parametersto seq(. .. ), and to many other S functions, can also be given in named form, in
which casethe order in which they appear isirrelevant. Thefirst two parametersmay be named
from=value and to=value; thusseq(1,30), seq(from=1,t0=30) andseq(to=30,from=1)
are all thesame as 1:30. The next two parametersto seq(. .. ) may be named by=value and
length=value, which specify astep sizeand alength for the sequencerespectively. If neither
of theseis given, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3

generatesin s3 thevector c(-5.0,-4.8,-4.6,...,4.6,4.8,5.0). Similarly
> s4 <- seq(length=51, from=-5, by=.2)

generatesthe same vector in s4.

The fifth parameter may be named along=vector, which if used must be the only parameter,
and createsa sequence1, 2, ..., length(vector), or the empty sequenceif the vector is
empty (asit can be).

A related functionisrep(...) which can be used for replicating a structurein various com-
plicated ways. The simplest formis

> 85 <- rep(x, times=5)

which will put five copiesof x end-to-endin s5.

4.4 Logical Vectors. Missing Values 8

4.4 Logical Vectors. Missing Values

As well as numerical vectors, S allows manipulation of logical quantities. The elements of a
logical vector have just two possible values, represented formally as F (for ‘false’) and T (for
‘true’). (TRUE and FALSE are also valid representations.)

Logical vectorsare generated by conditions. For example
> temp <- x>13

setst emp asavector of the samelength asx with valuesF correspondingto elementsof x where
the conditionis not met and T whereit is.

Thelogical operatorsare<, <=, >, >=, == for exact equality and ! = for inequality. In additionif
c1 and c2 arelogical expressions,thenc1 & c1 istheirintersection(and), c1 | ¢c2 istheir union
(or) and ! c1 isthe negationof c1.

L ogical vectorsmay beusedin ordinary arithmetic, inwhich casethey arecoercedinto numeric
vectors, F becoming 0 and T becoming 1. However there are situationswhere logical vectors
and their coerced numeric counterpartsare not equivalent.

In some cases the components of a vector may not be completely known. When an element
or valueis “not available” or a“missing value” in the statistical sense, a place within a vector
may be reserved for it by assigning it the special valuelA. In general any operation on an NA
becomes an 11A. The motivation for thisruleis simply that if the specification of an operation
isincomplete, the result cannot be known and henceis not available.

Thefunctionis.na(x) givesalogical vector of the same sizeasx with valueT if and only if
the corresponding element in x iSNA.

> ind <- is.na(z)

4.5 Character Vectors

Character quantitiesand character stringsare used frequently in S, for example as plot labels.
They are denoted by a sequence of charactersdelimited by the double quote character. E.g.
"x-values","New iteration results'. Singlequotescanalsobeused,inmatchingpairs.

Character stringsmay be collectedinto avector by thec(. .. ) function; examplesof their use
will emerge frequently.

Thepaste(...) functiontakesan arbitrary number of character string argumentsand concate-
natesthem intoasinglecharacter string. Any numbersgiven among the argumentsare coerced
into character stringsin the same way they would be if they were printed. The arguments are
by default separated in the result by a single blank character, but this can be changed by the
named parameter, sep=string, which changesit to string, possibly empty.

For example
> labs <- paste(c("X","Y"), 1:10, sep="")

makes 1abs the character vector ("'X1", "y2", "X3", ..., "X9", "Y10'"). Notein par-
ticular that recycling of short vectors takes place here too; thus c("'X", "Y'") is repeated 5



4.6 Index \ectors. Selecting and Modifying Subsets of a Data Set 9

times to match the sequence.

The elements of avector can be named (as well as numbered) by assigning a character vector
toitsnames attribute, e.g.

> costs <- c(26, 45, 67, 33, 51)
> names(costs) <- c("banana", "apple'", "orange", "fig", "kiwi")
> costs
banana apple orange fig kiwi
26 45 67 33 51

4.6 Index Vectors. Selecting and Modifying Subsets of a Data Set

Elementsof avector may be extracted by specifyingthe elementin square brackets, e.g. x[5].
More generally, subsets of a vector (or any expression that evaluatesto a vector) may be se-
lected by appending to the name of the vector an index vector in square brackets. Such index
vectors can be any of four distinct types:

1. A logical vector. Inthiscasetheindex vector must be of the samelength asthe vector from
which elements are to be selected. Values corresponding to T in the index vector are
selected and those correspondingto F omitted. For example

>y <= x['is.na(x)]

creates (or re-creates) an object y which will contain the non-missing valuesof x, inthe
same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[(Mis.na(x)) & x>0] -> z

createsan object z and placesin it the valuesof thevector x+1 for which the correspond-
ing valuein x was both non-missing and positive.

2. A vector of positiveintegral quantities. In this case the values in the index vector must
lieinthetheset {1, 2, ..., length(x)} . Thecorrespondingelementsof thevector
are selected and concatenated, in that order, in the result. Theindex vector can be of any
length and the result is of the same length as the index vector. For examplex[6] isthe
sixth component of x and

> x[1:10]
selectsthefirst 10 elementsof x (assuming length(x) > 10). Also
> c("x","y") [rep(c(1,2,2,1) ,times=4)]

(an admittedly unlikely thing to do) producesa character vector of length 16 consisting
of "x" R uyu R uyu R Nyt repeatedfour times.

3. A vector of negativeintegral quantities. Inthiscasetheindex vector specifiesthe values
to be excluded rather than included. Thus

>y <= x[-(1:5)]

givesy all but thefirst five elementsof x.

4.7 Arrays 10

4. A vector of character strings. This possibility only applies where an object has a names
attributeto identify its components. In this case a subvector of the names vector may be
used in the same way as the positiveintegral labelsin 2.

> lunch <- fruit[c("apple","orange")]

Thisoptionis particularly useful in connectionwith data frames (see §4.9).

An indexed expression can also appear on the receiving end of an assignment, in which case
the assignment operation is performed only on those elements of the vector. The expression
must be of the form vector [index_vector] as having an arbitrary expression in place of the
vector name would not make sense.

Thevector assigned must match thelength of theindex vector, and in the caseof alogical index
vector it must again be the same length as the vector it isindexing.

For example

> x[is.na(x)] <- 0

replaces any missing valuesin x by zerosand
> yly<0] <- -y[y<o0]

has the same effect as

> y <- abs(y)

4.7 Arrays

An array can be consideredas amultiply subscriptedcollection of dataentriesof thesametype,
for example numeric, logical or character string.

An array is defined by having a dimension vector, avector of positiveintegers. If itslengthis
k thenthe array isk—dimensional. The valuesin the dimensionvector give the upper limitsfor
each of thek subscripts. Thelower limitsare always 1. Suppose, for example, z is avector of
1500 elements. The assignment

> dim(z) <- ¢(3,5,100)
allowsz tobetreatedasa3 x 5 x 100 array.

Other functionssuch asmatrix(...) andarray(...) areavailablefor simpler and more nat-
ural looking assignmentsin special cases, e.g.

> z <- array(z, c(3,5,100))
> z <- matrix(z, 3, 5))

Thevaluesin thedatavector givethevaluesinthearray in the sameorder asthey would occurin
Fortran, that is, with thefirst subscript moving fastest and the last subscript slowest. For exam-
pleif thedimensionvector for anarray, say a, isc(3,4,2) thenthereare3 x 4 x 2 = 24 entries
in a and the data vector holds them in the order a[1,1,1], al[2,1,1], ..., al[2,4,2],

a[3,4,2]. To makelife easier, matrix hasabyrow=T parameter for data presented by row
rather than by column.



4.8 Lists 11

Individual elements of an array may be referenced by giving the name of the array followed
by the subscriptsin square brackets, separated by commas. More generally, subsectionsof an
array may be specified by giving a sequenceof index vectorsin place of subscripts; however if
any index positionis given an empty index vector, then the full range of that subscriptis taken.
Thusal2,,] isa4 x 2 array with dimension vector c(4,2) and datavector

al2,1,1],al2,2,1]1,al2,3,1]1, al[2,4,1],al2,1,2], a[2,2,2], a[2,3,2], a[2,4,2],

inthat order. a[,,] standsfor the entire array, which is the same as omitting the subscripts
entirely and using a alone.

Arraysmay be used in arithmetic expressionsand the result isan array formed by element-by-
element operationson the datavector. Thedimension vectorsof operandsgenerally need to be
the same, and this becomes the dimension vector of theresult. Soif 4, B and ¢ areall similar
arrays, then

>D <- 2%xAxB + C + 1

makesD a similar array with data vector the result of the evident element-by-element opera-
tions. The matrix multiplication operator is %%, .

There are extensive matrix manipulation facilities, including transposes and eigenvalue,
Cholesky, QR and singular-valuedecompositions. Seehelpon t, eigen, chol, gr and svd.

Any dimension of an array can be given a set of namesusing dimnames, but isusually easier
to usethefacilitiesof dataframes.

Matrices can be built up from given vectors and matrices by the functions cbind (...) and
rbind(...). Informally, cbind(...) formsmatricesby binding together vectorsor matrices
horizontally, or column-wise, andrbind(...) vertically, or row-wise.

4.8 Lists

An S list is an object consisting of an ordered collection of objectsknown asits components.
Thereisno particular needfor the componentsto be of the sasmemode or type, and, for example,
alist could consist of anumeric vector, alogical value, amatrix, a character array, afunction,
and so on.

Components are always numbered and may always be referred to as such. If trees isalist,
thenthefunctionlength(trees) givesthe number of (top level) componentsit has, specified
astrees[[1]], trees[[2]] and soon.

Components of lists may also be named, and in this case the component may be referred to
either by giving the component name as a character string in place of the number in double
square brackets, or, more conveniently, by giving an expression of the form

> name$component_name

for the same thing. Thisis avery useful conventionas it makesit easier to get the right com-
ponent if you forget the number, and is strongly advised. You can find out the names of the
componentsby

> names (names)

4.9 Data Frames 12

and this generates much less output that printing the object, which will achieve the same pur-
pose.

The names of componentsmay be abbreviated down to the minimum number of |ettersneeded
toidentify themuniquely. Most of the datasetsarein fact lists (or can betreated aslists), sowe
couldrefer to thecomponentdiam of thetrees dataastrees$d. Similarly, many S functions
return lists of results.

Itisimportant to distinguishtrees[[1]1] from trees[1]. “[[...]1]" isthe operator used to
select asingleelement of alist, whereas* [.. . 1" isageneral subscripting operator for vectors.
Fortunately, numbered componentsare needed very rarely.

New lists may be formed from existing objectsby the function1ist (... ). An assignment of
theform

> trees <- list(diam=tree.d, height=tree.h, volume=tree.v)

setsup alist tree of 3 componentsusingthe existingobjects tree.d, tree.h andtree.v
for the componentsand giving them names as specified by the argument names (which can be
chosen freely). If these names are omitted, the componentsare numbered only.

Listscanbe attach-ed aswell asdirectories, and this allows their componentsto be accessed
asif they were stand-aloneentities. Thusin the trees example we could have

> attach(trees)
> mean(height)

Itiswisetodetach("trees') after useto avoid any nasty surprises.

4.9 Data Frames

Dataframeswereintroducedin the August 1991 rel ease of S, and can bethought of asclosely-
coupled lists of data vectors of the same length. Unlike matrices, the data vectors can be of
different types, including character data. Both the rows and columns can be labelled. Consider
the dataframeroad from library(ripley):

> road
deaths drivers popden rural temp fuel
Alabama 968 158 64.0 66.0 62 119.0
Alaska 43 11 0.4 5.9 30 6.2
Mo 1289 234 63.0 100.0 40 180.0
Mont 259 38 4.6 72.0 29 31.0

which has both row and column labels. The columns can be treated as componentsof alist:

> road$rural

[1] 66.0 5.9 33.0 73.0 118.0 73.0 5.1 3.4 0.0 57.0 83.0 40.0
[13] 102.0 89.0 100.0 124.0 65.0 40.0 19.0 29.0 17.0 95.0 110.0 59.0
[256] 100.0 72.0

and the structure can be treated as atwo-dimensional array:



4.9 Data Frames 13

> road[2,4]
Alaska
5.9
> road["Mo", "temp'"]
Mo
40
> road["Mo",]
deaths drivers popden rural temp fuel
Mo 1289 234 63 100 40 180

Note how the row label is carried along.

Data framescan beattach-ed just aslists can, and thisallowstheir columnsto be accessed as
if they were named vectors.

A data frame can be created from vectors and matrices by thedata . frame function. For ex-
ample:

> treeframe <- data.frame(diam=tree.d, height=tree.h, volume=tree.v)
If the columns are not named, they pick up the names of the vectors, so

> treeframe <- data.frame(tree.d,tree.h,tree.v)

gives
tree.d tree.h tree.v
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8

Character vectors givento data.frame are automatically treated as factors (see §10), unless
specifiedwithina 1() function.

Reading datainto S 14

5 Reading data into S

Data objectswill usually beread as valuesfrom external files. Thisis done most conveniently
withthescan(. . .) function. To read a vector from the keyboard we can use

> counts <- ¢(2,3,3,4,3,2,1,3,8,11,6,6,7,12,11,11,
+ 117,121,47,22,85,98,43,20,119,209,68,43,67,99,46,33)
or

counts <- scan()
23343213811667 12 11 11
117 121 47 22 85 98 43 20 119 209 68 43 67 99 46 33

Input isterminated by ablank input line (from theterminal only, despitethe documentation) or
by EOF (ctrl-Din Unix). To readin acharacter vector we specify the vector type by the second
argument:

> diet <- scan(,"")

DEACBFCDFBAE
FACEDBBCEATFTD
EFBDCAABDTFEC

To read from afile specify its name as the first argument, for example
> counts <- scan('"chd.dat")

Now supposethat multipledatavectorsof equal lengthareto bereadinin parallel. For example
supposethat there are three vectors, the first of mode character and the remaining two of mode
numeric, and thefileis input.dat. Usescan(...) toread in the three vectorsas alist, as
follows

> in <- scan("input.dat",list(id="", x=0, y=0))

The second argument isadummy list structurethat establishesthe mode of the threevectorsto
beread. Theresult, heldin in, isalist whose (named) components are the three vectorsread
in.

Matrices are usually read by row, asfollows

> X <- matrix(scan("light.dat"), ncol=5, byrow=T)

The argument skip= to scan can be used to skip header rows of files.

Data frames can be read from a file by theread.table function. The datafile should be a
table in one of anumber of formats:

1. Afilesuchasrotifer.dat (page 39) which has afirst row naming the columns, fol-
lowed by the table of numeric data can be read by

> rotifer <- read.table("rotifer.dat', header=T)



5.1 Writing out data 15

2. Afilelaid outlikethelisting of adataframe. Thishasafirst header line, and rowswhich
contain the row label followed by the datafor the columns, such as

deaths drivers popden rural  temp fuel
Alabama 968 158 64 66 62 119
Alaska 43 11 0.4 5.9 30 6.2

Note that the header has one less entry than subsequent rows. Thisformat is read by
> road <- read.table('road.dat")
3. A table without any header. The row and column labelsarethen1, ..., m and Vi,

...Vn. However, if there exists a character column without duplicates, the first suchis
taken as the row labelsand removed as a column.

Sometimesit is necessary to read in character stringswhich contain spaces. Thiscan be done
by separatingthe fieldsin thefile by, for example, tabs or commas:

> usroad <- scan("road.dat'", sep="\t", list(state="", deaths=0,
+ drivers=0, popden=0, rural=0, jantemp=0, fuel=0))

where\t istheusual Unix abbreviationfor atab character. Thisdevicealsoappliestoread . table.

5.1 Writing out data

There are amny waysto write out datafrom S, for examplethe print, cat and format com-
mands. To write directly to afile, thereare cat, write and, from S-Plus 3.2, write.table
whichisusually the simplest method. Thiscanwriteadataframe, matrix or vector, with syntax

> write.table(data, file="", sep=",")

and further argumentscan be found in the hel p page. By defaultit writes out comma-separated
items on rows, but the separator can be changed to space or tab ("\+'" in Unix).

Thefunctionwrite writesavector, with syntax

> write(data, file='"data'", ncolumns=5)

for numeric data, and in one column for character data. To write out a matrix m, use
> write(t(m), file='"data'", ncolumns=ncol(m))

Thefunction format convertsdatato alineof characters, and can beused withwrite or cat
to construct custom reports.

Graphics 16

6 Graphics

The graphical facilitiesare central to S. The stepsinvolved are as follows:

1. Thetype of terminal, or device, isdeclaredto S at the beginning of the session:

> openlook()

2. A command isissued to construct a plot from data. For example
> plot(x,y)

specifiesa simple point plot where x and y are vectors giving the z- and y-coordinates
of the points respectively. (The command includes a default automatic choice of axes,
scales, titlesand plotting characters, al | of which can beoverriddenwith additional graph-
ical parametersthat could be included as named argumentsin the command.)

6.1 Graphical Parameters

Functions producing graphical output usually have optional additional named arguments that
can be specified to override some default parameter settings and hence modify the character-
isticsof aplot. A shortlist of the main onesisasfollows:

axes=L If FALSE al axesare suppressed. Default TRUE, axesare automaticaly constructed.

type="c" Type of plot desired. Vaues for c are:
p for points only, (the default for function plot),
1 for lines only,
b for both points and lines, (the lines miss the points),
s, S for step functions (s specifies to change now, $ to change just before the
next point),
o for overlaid points and lines,
h for high density vertical line plotting, and
n for no plotting (but axes are still found and set).

xlab="string" Give labels for the x— and/or y—axes (default: the names, including suffices, of
ylab="string" the x and y coordinate vectors).

sub="string" sub specifies atitle to appear under the x—axis label and main atitle for the top
main="string" of the plot in larger letters. (default: both empty).

xlim=c(lo ,hi)  Approximate minimum and maximum valuesfor x—and/or y—axessettings. These
ylim=c(lo, hi) valuesareautomaticaly rounded to make them “pretty” for axislabelling.

Other graphical parameters control the background characteristicsof all subsequent plots and
are usually specified by a call to the function par(...). There are a great number of these
parameters and the command

> help(par)

gives a completelist of them and their meanings. Some of the more commonly adjusted ones
areasfollows:



6.2 Some Basic Plotting Functions 17

lty=n Linetypeisn. If linesare being plotted, avariety of linetypesis available; n =
1 meansasolidling n = 2, 3, ... indicatesavariety of broken line forms.

pch="¢" Specify the character to be used for plotting points (default: * for graphics ter-
minals, e for PostScript).

mfrow=c(m,n) multiple frames on the one plot. Instead of plotting just one graph per screen,

mfcol=c(m,n) each screen (or page) will contain an array of mxn graphsforminganm x n grid.

If mfrow is used the screen isfilled row-by-row and if mfcol isused it isfilled
column-by-column. Useful if many graphs are to be inspected simultaneously
and high resolution is not necessary.

pty="¢c" Specify the type of plotting region currently in effect. Possiblevauesfor ¢ are
s to generate a square plotting region;
m (the default) to generate a maximal size plotting region.

6.2 Some Basic Plotting Functions

The elementary plotting functionsare as follows:

plot(x,y,...) Scatter plot of points with x— and y—coordinates given by the two
main parameters. The pair x,y may be replaced by asinglelist with
componentslabeled x and y, called a‘plot list’.
Graphical parametersare particularly useful.

points(x,y,...) Add pointsto an existing pl ot (possibly usingadifferent plotting char-
acter. Followsonfromaplot(...) command.

lines(x,y,...) Add linesto an existing plot. Similar to points.
Note

> plot(x,y); lines(spline(x,y))
will join the points of a plot by a cubic splineinterpolationfunction.
(Seehelp(spline) for furtherinformation.)

text(x,y, Add text to aplot at pointsgiven by x,y. Normally 1abels isanin-
labels,...) teger or character vector inwhich caselabels[1] isplottedat point
(x[1]1,y[i]1). Thedefaultis1:1length(x).
Note: Thisfunctionisoften used in the sequence
> plot(x,y,type="n"); text(x,y)

The graphics parameter type="n" suppressesthe plotting of points
but set up theaxes, andthetext (. . . ) functionsuppliesspecial char-
acters(in this casejust the integersby default) for the points.

abline(a,b,...) Draw alineininterceptandslopeform, (a,b), acrossan existing plot.
abline(h=c,...) h=c may be used to specify y—coordinatesfor the heightsof horizon-
abline(v=c,...) tal linesto go acrossaplot, and v=c similarly for the x—coordinates
abline(Imobject,...) for vertical lines.

6.3 Interaction with Plots

S-Plus alows usersto interact with plots, by identifying pointsand by adding information at
places selected by mouse clicks.

6.4 Brushand Spin 18

identify(x,y,labels) On acurrent plot of x,y, clicking the LEFT mouse button places
the appropriate string from 1abel near the point which has been
clicked on. Click the MIDDLE mouse button to finish. If 1abel
is omitted uses index numbers, and aways returns the indices of

selected points.
locator() Returns alist of vector coordinates of points clicked by the LEFT
mouse button. Click the MIDDLE mouse button to finish.
locator(,"p") ditto, but plotsthe pointsasinplot.
legend(locator(),...) Add alegend box at a mouse-selected point (one LEFT click). See

help page for the box contents and other options.

locator () isoftenused with text to add annotationto plots, e.g.

> text(locator(),"controls"); text(locator(),"cases")

6.4 Brush and Spin

These are S-Plus enhancementsto allow dynamic manipulation of graphs. Spin allowsthree
columns chosen from amatrix of datavectorsto be rotatedin space.

> help("state")

> spin(state.x77)

Usetheleft mouse buttonto select three of the variabl es, then use the cross-shapedpadto rotate
the point cloud. Finally click on quit.

> brush(state.x77, hist=T)

includesspin andapairs plot. Additionally one can ‘brush’ by selecting pointswith the left
mouse button, and de-sel ectingthem with the middl e button. One can mark pointsin different
ways, with thefour symbols, and even label pointsif 1abel is selected.

> brush(rbind(iris[,,1],1iris[,,2],iris[,,3]1))

Now select thefirst 50 pointswith one symbol and the last fifty with another. Theintermediate
nature of the middle 50 then stands out.

6.5 Equally-scaled plots

It is sometime necessary to make geometrically-square plots, for example so that distances
can be assessed accurately. Thisis somewhat tricky, but done by the functionseqscplot in
library(ripley), whichadjuststhe axisscalesto be equal withinthe current window shape.



6.5 Equally-scaled plots

19

5-PLUS

Sepal W

Petal L.

Petal W.

7 Properties 7

Sepall
Sepal W,
PetalL

Petal W,

up
Teft | circle | dght

dovn

quit

| persistent ‘

wansient

[otsbel |

label

brush bize

Sepall.

Sepal W

PetalL

-

1

Figure 1: Screen dump of an openlook() window displaying brush onthe iris data, with
different highlightsfor the three groups.

Satistical Summaries 20

7 Statistical Summaries

7.1 Arithmetical Summaries

Standard summariessuch asmean, median and var areavailable. Thevar functionwill takea
datamatrix and give the variance-covariance matrix, and cor computesthe correlation matrix,
either from two vectorsor a datamatrix.

Therearealsostandardfunctionsmax, min, range andquantile. Thefunctionsmean and cor
will computetrimmed summaries. More sophisticated robust summeariesare available, such as
location.m andscale.tau aswell asviatherobust library.

7.2 Histograms and Stem-and-Leaf Plots

Thestandardhistogramfunctionishist (x, ...) which plotsaconventional histogram. More
control isavailableviatheextraparameters. Theparameter probability=T givesaplotof unit
arearather than cell counts, andnclass setsthe number of bins.

Densitiescan be estimated viathe functiondensity:

hist(hstart, nclass=20, probability=T, ylim=c(0,0.02))
lines(density(hstart))
lines(density(hstart, width=20), lty = 3)

Seefigure 2.

0.020

0.015

0.010

0.005

0.0

T T |
50 100 150 200
hstart

Figure2: A histogramof hstart with two density estimates overlaid.



7.3 Boxplots 21

A stem-and-leaf plot isan enhanced histogram:

> stem(hstart)

N = 108 Median = 133.85
Quartiles = 105.2, 158.8

Decimal point is 1 place to the right of the colon

5:5

6 : 2239

7 : 55799

8 : 233567
9 : 1235779
10 : 00456
11 : 04568

12 : 023466667777899
13 : 0112344456799

Distributions

22

40
-3

| B
== | ==

| CE-3

-1
| Bl
E

|| CIE-31

-

|| E-El-3

Jan Feb Mar

Apr

May Jun Jul

Aug

Sep Oct Nov Dec

Figure 3: Boxplotsfor months of nottem data.

8 Distributions

S hasfunctionsbuiltit to (approximate) thedensity, cumul ativedistribution functionand quan-
tile function (the inverse of the CDF) for many standard distributions. There are also function
to simulate samplesfrom thesedistributions. Thefirst letter of the nameindicatesthefunction,
e.g. dnorm, pnorm, qnorm, rnorm respectively.

Distributions availableare:

14 : 1222333447999
15 : 0013458

16 : 0159

17 : 66

18 . 27

19 . 77

20 : 01333445667
21 : 38

22 : 68

23 : 14

Apart from giving avisual pictureof the data, this givesmore detail. The actual data, in sorted
order,isroughly55, 62, 62, 63, 69, ... andthiscanberead off the plot. Sometimesthe
pattern of numbers(all odd?) gives clues. Quantilescan be computed (roughly) from the plot.

7.3 Boxplots

A boxplotisaway to look at the overall shapeof a set of data. The central box showsthe data
between the quartiles, with the median represented by aline. *Whiskers' go out to the extremes
of thedata, and very extreme pointsare shown by themselves. It isalso possibleto plot boxplot
for groups side-by-side:

> library(ripley)
> boxplot(split(nottem, cycle(nottem)), names=month.abb)

divides atime-seriesinto months, and plotsthe boxplotsfor each month on one plot. Seefig-
ure 3. Other stylesof boxplot are available—seethe help page.

Distribution S name parameters

beta beta shapel, shape?2
binomial binom size, prob
Cauchy cauchy location, scale
chisquare chisq df

exponential exp rate

F i df1,df2

gamma gamma shape

geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis loc, scale
negative binomial nbinom size, prob
normal norm mean, sd
normal range nrange size, sd
Poisson pois lambda

stable stab index, skewness
T t df

uniform unif min, max
Weibull weibull shape, scale
Wilcoxon wilcox m, n



81 Q-QPlots 23

Thefunctionsample re-samplesfrom a datavector, with or without replacement.

8.1 Q-Q Plots

One of the best ways to compare the distribution of a sample x with adistributionisto use a
Q-Q plot, of which the normal probability plot is the best-known example. Q-Q plotscan also
be used to compare two samples. For a sample x the quantile function is the inverse of the
empirical CDF, thatis

quantilgp) = min(z | proportionp of thedata < z)

Thefunctionqgplot(x, y, ...) plotsthe quantilefunctionsof two samplesx andy against
each other, and so comparestwo samples. Thefunctionqqrorm(x) replacesoneof thesamples
by a sample at the quantiles of a standard normal distribution. This idea can be applied quite
generally. For example, to test a sample against a ¢, distribution, we use

plot( qt(ppoints(x),9), sort(x) )
where ppoints computesthe appropriate set of probabilitiesfor the plot.

The function qqline helps assess how straight a qqnorm plot is by plotting a straight line
through the upper and lower quartiles. (Seethe examplein §3.)

Classical Satistics 24

9 Classical Statistics

S-Plus 3.1 hasa section on classical statistics. The same functionsare used to perform tests
and to calculate confidenceintervals.

Thetable showsthe amount of wear in ashoeexperiment with 10 boys, an experiment reported
inBox, Hunter & Hunter (1977), Satisticsfor Experimenters. Thereweretwo materials(A4 and
B) that were randomly assigned to the |eft or right shoe.

boy A B

1 13.2 (L) 14.0 (R)
2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 14.3 (L) 14.2 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 ()
10 13.3 (L) 13.6 (R)

We can use these datato illustrate one-sampleand paired and unpaired two-sampletests. The
rather voluminous output has been edited:

> shoes <- scan(,list(A=0, B=0))
1: 13.2 14.0

3: 8.2 8.8

5: 11.2 10.9

7: 14.3 14.2

9: 10.7 11.8

11: 6.6 6.4

13: 9.5 9.8

15: 10.8 11.3

17: 9.3 8.8

19: 13.3 13.6

21:

> attach(shoes)

> t.test(A, mu=10)

One-sample t-Test

data: A
t = 0.8127, df = 9, p-value = 0.4373
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
8.876427 12.383573
sample estimates:
mean of x



Classical Satistics 25

10.63

> t.test(A)$cont.int
[1] 8.876427 12.383573
attr(, "conf.level"):
[1] 0.95

> wilcox.test(A, mu=10)

Exact Wilcoxon signed-rank test

data: A
signed-rank statistic V = 34, n = 10, p-value = 0.5566
alternative hypothesis: true mu is not equal to 10

> t.test(A, B)
Standard Two-Sample t-Test

data: A and B
t = -0.3689, df = 18, p-value = 0.7165
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.744924 1.924924
sample estimates:
mean of x mean of y
10.63 11.04

t.test(A, B, var.equal=F)
>
Welch Modified Two-Sample t-Test

data: A and B
t = -0.3689, df = 17.987, p-value = 0.7165

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-2.745046 1.925046

sample estimates:

mean of x mean of y

10.63 11.04

> t.test(A, B, paired=T)
Paired t-Test

data: A and B
t = -3.3489, df = 9, p-value = 0.0085
alternative hypothesis: true mean of differences is not equal to 0
95 percent confidence interval:
-0.6869539 -0.1330461

Classical Satistics 26

> wilcox.test(A, B, paired=T)
Wilcoxon signed-rank test

data: A and B
signed-rank normal statistic with correction Z = -2.4495, p-value = 0.0143

The samplesizeisrather small, and one might wonder about the validity of the ¢-distribution.
An dternativefor arandomized experiment such asthisisto baseinferenceon the permutation
distribution of d. Figure 4 shows that the agreement is very good. (As the computation of this
figureuses some subtleideasin S, it isomitted: see Venables & Ripley (1994, Chapter 5).)

—— Permutation dsn
-—- t9cdf

0.3 0.4
0.6 0.8 1.0

0.2

0.4

0.1
0.2

0.0
0.0

Figure4: Histogramand empirical CDF of the permutationdistributionof the ¢-test inthe shoes
example. The density and CDF of ¢, are shown overlaid.

Thelist of classical testsis:

binom.test chisq.test cor.test fisher.test
friedman.test kruskal.test mantelhaen.test mcnemar.test
prop.test t.test var.test wilcox.test

Many of these have alternative methods — for cor.test there are methods "pearson",
"kendall" and'spearman'.



Handling Categorical Data 27

10 Handling Categorical Data

Consider a (fictitious) survey of shoppersin Britain. Amongst the variablescollected for each
person surveyed are sex, age, TV area’, social class!, transport used for this trip to the shops,
and total spend at supermarkets. The possible valuesof thesevariablesare

sex: M, F

age: —24, 25-44, 45-59, 60+
TV areax 1,...,12

social: A, B,C1,C2

transport: car, bus, cycle, foot
spend: positive continuous

This providesexamples of each of S’s typesof categorical datastructure. Thereare two main
structures, categoriesand factors. The latter were introducedin the August 1991 release, and
have almost entirely superseded the use of categories. A factor isregarded as avector over the
set of levelswhich havenoimplied order. Thussex, TV areaand transportareall factors. How-
ever, TV areais coded by number rather than by the names of the companies. Thesevariables
can be declared as

sex <- factor(sex.data)
TV.area <- factor(TV.data)
transport <- factor(transport.data)

Internally in S levels are numbered in al phabetical order, and when factorsare used as treat-
ments in designed experiments, the order of levels may matter. For example, if we want to
contrast femaleswith males (rather than vice versa) we need to specify the levels of the factor
explicitly:

> sex <- factor(sex.data, levels=c("M","F"))

Social classis an ordered factor in that the classesare perceived as ordered, with “A” (profes-
sionals) regarded as highest. We can declare an order by

social <- ordered(factor(social.data))
levels(social) <- levels(social)[4:1]
age <- ordered(factor(age.data),

levels=c("-24", "25-44", "45-59" "60+"))

Thefirst line ordersthe levels by the default (alphabetical) order. The second shows how the
set of levelsmay be changed, in this case by reversing the existing ordering. Ageisan ordered
category for whichitisnecessaryto specify thelevelsexplicitly. Had age . data been specified
asacontinuousvariable, it could havebeen categorized using cut (whose hel p pagegivesother
waysto producethe categories):

age.cdata <- cut(age.data, c(0, 25, 45, 60, 99))
age <- ordered(factor(age.cdata),
levels=c("-24", "25-44", 6 "45-59", "60+"))

3Britain is covered by 12 commercial TV companies, so this providesa simple geographical variable.
4 Derived from occupation.

10.1 TheFunction tapply(...) and Ragged Arrays 28

Some of the functionsfor statistical model s treat ordered factorsin appropriatespecial ways.

10.1 The Function tapply(...) and Ragged Arrays

To continuethe previousexample, suppose we have want to summarize spend by some of the
factors To calcul ate the sample mean income for each age-group we can now use the special
function tapply(...):

> spend.means <- tapply(spend, age, mean)
giving a means vector with the components|abeled by the levels
> spend.means

-24  25-44  45-59 60+
27.20 35.53 33.42 17.65

Suppose further we needed to calculatethe standard errors of the mean spends. To do thiswe
need to write an S function to calculate the standard error for any given vector. We discuss
functions more fully in §12, but since there is an inbuilt functionvar(...) to caculatethe
sample variance, such afunctionisavery simple one-liner, specified by the assignment:

> stderr <- function(x) sqrt(var(x)/length(x))
After thisassignment, the standard errors are cal culated by
> spend.stderr <- tapply(spend, age, stderr)

and the values calculated are then

spend.stderr
-24  25-44  45-59 60+
3.70 2.33 4.55  2.70

The function tapply(...) can be used to handle more complicated indexing of a vector by
multiple factors. For example, we might wish to split the spend by both age and sex:
> tapply(spend, list(age, sex), mean)

The combination of a vector and a labelling factor is an example of what is called aragged
array, sincethe subclasssizesare possibly irregular. When the subclasssizes are al the same
the indexing may be doneimplicitly and much more efficiently by using arrays. The function
apply istheanalogueof tapply for arrays.

The pattern of our survey can be seen by the table function, which takes alisting of factors
and returnsthe contingency table as an array, e.g.

> table(sex, age, TV.area, social, transport)



Loops and Conditional Execution 29

11 Loops and Conditional Execution

Commands may be grouped together in braces, {expr;; expra;...; expr,,}. Thevalueof
the group isthe result of thelast expressionin the group evaluated. Since such agroupisalso
an expressionit may, for example, beitself includedin parenthesesand used as part of an even
larger expression, and so on. Thisfacility is most often used with the control statementsof this
section.

The control statements are very close in spirit to those of the C programming language, and
only afew are mentioned here. Thereis a conditional construction of theform

> if (expry) expr, else €Xprs

where expr; must evaluateto alogical value and theresult of the entire expressionis then evi-
dent.

Thereis aso ator—oop constructionwhich hastheform
> for (name in expr;) expry

where nameisadummy, expr; iSavector expression (often asequencelike1:20), and expr;
is often a grouped expression with its sub-expressionswritten in terms of the dummy name.
expr; iSrepeatedly evaluated as name rangesthrough the valuesin the vector result of expr; .

As an example, suppose ind is a vector of class indicatorsand we wish to produce separate
plotsof y versusx within classes. Use the help facility to understand the following:

> yc <= split(y,ind); =xc <- split(x, ind)
> for (i in 1:length(yc)){plot(xc[[11]1,yc[[i]11);
+ abline(1sfit(xc[[1]],yc[[1]11))}

(Notethefunctionsplit(...) which producesalist of vectorsgot by splittingalarger vector
according to the classes specified by afactor.)

Other looping facilitiesincludethe
> repeat expr

statement and the

> while (condition) expr

statement. The break statement can be used to terminate any loop abnormally, and next can
be used to discontinueone particular cycle.

Loopsin S are often memory-hungry, and care may be needed not to use up al of your com-
puter’'smemory. Expert adviceis necessary on work-arounds.

Writing Your Own Functions 30

12  Writing Your Own Functions

As we have seeninformally in §10.1, the S language allows the user to create hisor her own
functions. Thesearetrue S functionsthat arestoredin aspecial internal form and may be used
infurther expressionsand so on. Inthe processthelanguagegainsenormously in power, conve-
nienceand elegance. Most of thefunctionssuppliedaspart of the S system, suchasmean(. . .)
andvar(...) andsoon, arethemselveswrittenin S and thusdo not differ materially fromuser
written functions. (However, increasingly such functionsare being re-written asinternal func-
tionsto gain efficiency.) Listing these functions (by printing their name without parentheses)
isavery fruitful way to gain hints for writing your own functions.

A functionis defined by an assignment of the form
> name <- function(arg;, args, ...) eXpression

The expressionis an S expression, (usually a grouped expression), that uses the arguments,
arg;, to calculateavalue. Thevalue of the expressionisthe valuereturned for the function. A
call to the function then takes the form name (expr,, expr,,...) and may occur anywherea
function call is legitimate.

For example, the IQR functionin library(robust) isdefined as:

IQR <- function(y)

{
r <- quantile(y, c(.25, .75))
r[2] - r[1]

}

Thisfirst computesthe quartiles, then returnsthe last value computed, their difference.

Note that any ordinary assignments done within the function are temporary and | ost after exit
fromthe function. Thusr is not left behind, and does not affect any other object r.

If global and permanent assignments are intended within a function, then the ‘ superassign-
ment’ operator, ‘<<-' can be used. Seethe help documentation for details, and see also the
synchronize() function

As a second example of auseful function, consider afunction to evaluate the * Huber proposal
2’ robust estimator(s) of location and/or scale:

hubers <- function(y, k = 1.5, mu, s, initmu = median(y), tol = 1.0e-6)
{
y <= y['is.na(y)]
n <- length(y)
if(missing(mu)) {
mu0 <- initmu
nl <- n-1
} else {
mul0 <- mu
mul <- mu
nl <- n
H
if(missing(s)) {



Writing Your Own Functions 31

s0 <- mad(y)
} else {
s0 <- s
sl <- s
}
th <- 2 * pnorm(k) - 1
beta <= th + k™2 * (1 - th) - 2 * k * dnorm(k)
repeat {
yy <- pmin(pmax(mu0 - k * s0, y), mu0 + k * s0)
if(missing(mu)) mul <- sum(yy)/n
if(missing(s)) {
ss <- sum((yy - mul)~2)/n1
sl <- sqrt(ss/beta)
}
if((abs(mu0 - mul) < tol * s0) && abs(s0 - sl1) < tol * s0)
break
mu0 <- mul
s0 <- sl
}
list(mu = mu0, s = s0)

}

This alows either of the location mu and scale s to be specified. Optional arguments are the
parameter k, the initial value for mu and a convergence tolerance. The first line removes all
missing values. Themissing() functionchecksif aparameter issupplied. Two constantsare
then calculated as functionsof k. Therest of thefunctionisaloop. In general loopsareineffi-
cientin S and should be avoided if at all possible, but herewe have no choiceasthecalculation
isiterative. Finally the function returnstwo components, the location and scale.

It is sometimes useful to be ableto time commands:

cputime <- function(x) sum(unix.time(x)[-3])
elapsed <- function(x) unix.time(x)[3]

which return thetotal cpu time and the el apsed time taken by a command or sequenceof com-
mands enclosedin {...}. Note: asthese are functions, assignmentsinside them arein the
frame of the function rather than permanent. Alternatively, useproc.time() beforeand after
agroup of commands.

Satistical Models 32

13 Statistical Models

Thesefacilitiesform the heart of the 1991 version of S. They are based on object-oriented ex-
tensions, so that generic functionssuch as print know what to do with the results of various
models. Thetwo most basic notions are a data frame (§4.9) and a model formula.

13.1 Model Formulas

A model formulacouplesay-vector with a model expressedin aterminology very similar to
that of GLIM and GENSTAT. Theformis

> loss 7 hardness + tens

for the linear regression of 1oss on hardness and tens. Factorsare replaced by a set of in-
dicator variablesfor the regression, and can interact via the : operator (not . asthisisavalid
character in avariablename). Thuswe can have all the following constructs:

> time ” poison + treatment + poison:treatment equivalent to

> time ~ poison * treatment

> strength ~ yarns/bobbins nested layout

> gain 7 group + initial paralel lines

> conc ” -1 + reading line thorough the origin
> conc ” poly(reading, 2) quadratic polynomia

> conc " ns(reading, 4, intercept=T) natura spline

> conc ” s(reading) smooth function, for gam

The syntax of alinear-model fit is
1m(model formula, dataframe)

wherethe namesinthe model formularefer to columnsof the dataframe, which can be omitted
if it has already been attached. For example

library(ripley)

attach(rubber)

tyres.1lm <- Im(loss ~ hard + tens)
summary (tyres.1lm)

anova(tyres.1lm)

coefficients(tyres.1lm)
plot(fitted(tyres.1lm), resid(tyres.lm))

vV V V V V V VvV

This show how to extract informationfromafit by the use of ancillary functions. Thereareno
standard ancillary functionsfor standardized and Studentized residuals, but | have added them
asstdres() and studres() inlibrary(ripley).



13.2 One-way Layouts 33

13.2 One-way Layouts

The analysis of one-way layout is best illustrated by an example. The table gives dataon ob-
served concentrations (ng/ml) of achemical in groups of 10 patients after oral administration
of amitrine bismesylate:

drug dose (mg)

subject 25 50 100 200

1 34 92 256 229

2 46 150 271 232

3 50 81 270 288

4 49 155 120 195

5 21 85 333 354

6 52 95 198 288

7 30 95 109 288

8 29 82 140 170

9 27 110 147 522

10 51 99 196 296
> stdev <- function(x) sqrt(var(x)) Function to compute st. dev.
> chemical <- scan("chemical.dat")
> dose <- rep(c(25, 50, 100, 200), 10) Label the observations by dose
> group <- factor(dose) Make afactor from the doses
> boxplot(split(chemical, dose))
> tapply(chemical, dose, mean)
> tapply(chemical, dose, stdev)
> chems <- data.frame(group, chemical) set up for AOV
> chems.aov <- aov(chemical ~ group, chems)
> summary(chems.aov) print out table
> coefficients(chems.aov) and the parameters
> chems.aov <- aov(log(chemical) ~ group, chems) andonlogscae
> summary(chems.aov)
> summary(aov(log(chemical) ~ log(dose)+group, chems))

test for linearity of response

which gives

> summary(chems.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
group 3 356084.5 118694.8 28.91804 1.069219e-09
Residuals 36 147762.9 4104.5
> coefficients(chems.aov)

(Intercept) groupl group2 group3
158.375 32.75 44.11667 42.60833
> summary(chems.aov)
Df Sum of Sq Mean Sq F Value Pr(F)

13.2 One-way Layouts 34

group 3 22.93801 7.646003 74.7226 1.554312e-15
Residuals 36 3.68371 0.102325
> summary(aov(log(chemical) ~ log(dose)+group, chems))

Df Sum of Sq Mean Sq F Value Pr(F)
log(dose) 1 21.87397 21.87397 213.7692 0.00000000
group 2 1.06404 0.53202 5.1983 0.01038375

Residuals 36 3.68371 0.10233

The parameterization of linear models for designed experimentsis a little tricky. The usual
parameterizationisto imposea ‘sumto zero’ constraint on the parametersfor afactor. GLIM
setsthe parameter for thefirst level to zero, so that parametersfor thethe other level sarediffer-
ences between that level and thefirst. By default S usesthe Helmert parameterization, which
compares the second and subsequent level sto the average of lower levels. The usual parame-
terization can be gotten as default by setting

> options(contrasts=c("contr.sum'", "contr.poly"))
and the GLIM parameterization by

> options(contrasts=c('contr.treatment'", "contr.poly"))

Of course, the parameterization only affects the coefficients, not the fitted values, residuals,
. The contrasts for a particular term in a fit can be changed by the ¢() function, e.g.
C(group, sum) Or using contrasts.

Thereisa’ clever’ way totest for linearity using are-parameterization of thefactor group asan
orderedfactor, for which thedefault parameterizationispolynomialin {1, ..., #(levels)}.
(Thisrelieson log(dose) having levelsin an arithmetic progression. One could always use
poly(log(dose),3) inplaceof 1dose.)

> ldose <- ordered(factor(log(dose)))
> summary.lm(aov(log(chemical) ~ ldose, chems))

(Asfar as| canseetheuse of summary . 1m iSnecessary to get resultsfor theindividual coeffi-
cients.) Thisshowsthat the response can be regarded as quadraticin log(dose):

> summary.lm(aov(log(chemical) ~ ldose, chems))
Call: aov(formula = log(chemical) ~ ldose, data = chems)
Residuals:
Min 1Q Median 3Q Max
-0.5706 -0.2187 -0.001092 0.2806 0.6481

Coefficients:
Value Std. Error t value Pr(>|[tl])
(Intercept) 4.7750 0.0506 94.4089 0.0000

ldose.L 1.4790 0.1012 14.6208 0.0000
ldose.Q -0.3254 0.1012 -3.2168  0.0027
ldose.C  0.0228 0.1012 0.2255 0.8228

Residual standard error: 0.3199 on 36 degrees of freedom
Multiple R-Squared: 0.8616



13.3 Designed Experiments 35

F-statistic: 74.72 on 3 and 36 degrees of freedonm,
the p-value is 1.554e-15

Correlation of Coefficients:
(Intercept) ldose.L ldose.Q

ldose.L 0
ldose.Q O 0
ldose.C 0 0 0

13.3 Designed Experiments

The central concept for designed experimentsis a factor. Consider the famous Box-Cox poi-
sonsdata(survival times (in hours) of animal swith 3 poisonsand 4 antidotes, from Box & Cox
(1964), J. Roy. Statist. Soc. B26, 211-252 and Box, Hunter & Hunter (1977), Satisticsfor Ex-
perimenters). The functionfac.design generatesthe rows, columns and so on — consultits
help pagefor full details.

stimes <- scan("poison.dat") data in hours
fnames <- list(treat=LETTERS[1:4], repl=1:4, poison=c("I","II","III"))
poisons<- data.frame(fac.design(c(4,4,3),fnames),stimes)
par(mfrow=c(3,2))

plot.design(poisons)

plot.design(poisons, fun=median)

attach(poisons)

plot.factor(stimes ~ treat + poison,data=poisons) box plots
interaction.plot(treat, poison, stimes)

interaction.plot(treat, poison, stimes, fun=median)

poisons.aov <- aov(stimes ~ treat * poison) full fit

fits <- fitted(aov(stimes ~ treat + poison)) additive fit for 1dofna
summary(poisons.aov)

par(mfrow=c(2,2))

hist(resid(poisons.aov))

qqnorm(resid(poisons.aov))

plot(fitted(poisons.aov),resid(poisons.aov))

summary(aov(stimes ~ treat + poison + fits"2 + treat:poison))

plot main effects
and using medians

which gives

> summary(poisons.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
treat 3 92.1206 30.70688 13.80558 0.0000038
poison 2 103.3012 51.65062 23.22174 0.0000003

treat:poison 6 25.0138 4.16896 1.87433 0.1122506
Residuals 36 80.0725 2.22424

133

Designed Experiments

36

6
6

] Tl

"
@ 9]
g
£ £
Buw T 5
S T
5. 1 &, 31 il
g c g CI *
] A ™ A
11} 1
treat repl poison treat repl poison
Factors Factors
o 0 o~ e
B i B
- ! B o i —_
] i ] 7
- 3 - ‘

stimes
4 6

stimes
4 6

|

treat

n n
poison

° poison w poison
et ” e
4 e~ lih
£
So e
S < e
2 £
©
~ ~
treat
& N .
B
] g .
c .o
o B oo’
= 5 o "P‘_/""
& o
o P
wn [% .o
L o .
o . °
-4 -2 0 2 4 -2 -1 0 1 2
resid(poisons.aov) Quantiles of Standard Normal
. o0
<~
=
) T
T N . M o ©
@ s
s . . =
2 YWy - 3
5 ] P . . ]
g (=] ! . : 39
] LS . . g <
7] . . )
L o .
: g
. <
2 4 6 8 -2 -1 0 1 2
fitted(poisons.aov) Lambda

Figure5: Plotsfor Poison data



13.3 Designed Experiments 37 13.3 Designed Experiments

> summary(aov(stimes ~ treat + poison + fits"2 + treat:poison)) ; glitc<g ;can(, )
Df Sum of Sq Mean Sq F Value Pr(F) CDFBAE
treat 3 92.1206 30.70688 13.80558 0.0000038 FACEDB
poison 2 103.3012 51.65062 23.22174 0.0000003 BCEATD
I(fits™2) 1 15.3724 15.37242 6.91132 0.0125158 EFBDCA
treat:poison b 9.6413 1.92827 0.86693 0.5127325 ABDFEC
Residuals 36 80.0725 2.22424
> wtgain <- scan()
indicating the need for transformation. The I(...) function protectsthe argument from ex- EZ;L Zii ?'Zé gii Zii g'i‘;’
pansion; (tAreaLj+p01son) 2hIS unn_valentt_o treat+poisont+treat:poison and generally 6.18 5.87 5.41 7.49 7.44 6.43
(factors)"n givesup to n-th order interactions. 3.56 5.91 5.61 4.39 7.63 5.44
Thereis no direct Box-Cox function, but we can do the operationsby hand. They are quite 6.05 8.16 6.27 5.84 6.71 5.77
4.95 6.35 5.56 7.50 7.04 6.22

slow (25 secson a SparcStation 1 PC), dueto the overhead of callingtheaov function:

x1 <- seq(-2,1,by=0.1)
loglik <- as.vector(xl)
n <- length(stimes)
nlngm <- log(prod(stimes))
for(i in 1:length(x1)){
if(abs(x1[il) > 0.01)
{
ss <- sum((aov(stimes"x1[i] ~ treat + poison)$resid)”2)
loglik[i] <- n*log(abs(x1[i])) - n/2%log(ss) + (x1[i]J-1)*nlngm

diet <- factor(diet)

latin <- data.frame(fac.design(c(6,6), list(brank=1:6,litter=1:6)),
diet, wtgain)

plot.design(latin)

Diet <- C(diet, treatment)

latin.aov <- aov(wtgain ~ brank + litter + Diet, latin)

summary(latin.aov)

summary.lm(latin.aov)

VvV V. V V V 4+ VvV VvV

} The last command gives t-valuesfor the contrasts(diet ? — diet A).
else
{ > summary(latin.aov)
ss <- sum((aov(log(stimes) ~ treat + poison)$resid)”2) Df Sum of Sq HMean Sq F Value Pr(F)
loglik[i] <- - n/2%log(ss) - nlngm brank 5 7.92405 1.584809 2.788687 0.04545633
} litter 5 7.72041 1.544083 2.717023 0.04962477
} Diet 5 11.61751 2.323503 4.088518 0.01015490
plot(xl, loglik, xlab = "Lambda", ylab = "Log Likelihood", type = "1") Residuals 20 11t36599 0.568299
lambdahat <- loglik[loglik == max(loglik)] > summary.lm(latin.aov)
limit <- lambdahat - 0.5 % qchisq(0.95, 1) Call: aov(formula = wtgain ~ brank + litter + Diet, data = latin)
abline(limit, 0) Residgals:
scal <- (par("usr")[4] - par('usr")[3])/par("pin")[2] Min 1Q Median 3Q Max
text(c(x1[1]), limit + 0.1 * scal, " 95%™) -2.051 -0.2906 0.1211 0.3715 0.9061
A more efficient way (4 secs) isto use the functionBoxCox inthelibrary ripley: Coefficients:

Value Std. Error t value Pr(>|tl])
> library(ripley) (Intercept) 5.6050 0.3078  18.2122  0.0000
> BoxCox(stimes ” treat + poison)

DietB  0.4617  0.4352 1.0607  0.3015

. . - o . . . DietC  0.4033  0.4352 0.9267  0.3651

Now_ c_onsuder alLatin square. Six _I|tters_of SiX p|g|etS\_/vere ranked in ordt_er of blr_thwe|ght, DietD 0.3550  0.4352 0.8156  0.4%43
providinga6 x 6 table, and each piglet given one of 6 dietary supplementsin aLatin square. DietE  0.9700  0.4352 9.9987  0.0375
The weight gain (in kg) over 12 weeksis givenin the table. DietF  1.7583  0.4352 4.0399  0.0006




13.4 Generalized Linear Models 39

13.4 Generalized Linear Models

The functions1m and aov have extensionsglm which fits generalized linear models, and gam
which further extendsthisto allow semi-parametric smooth functionsin the explanatory vari-
ables. We can, for example, fit the poisonsdata by agamma GLM:

attach(poisons)
poisons.glm <- glm(stimes ~ treat + poison, family=Gamma)
note the'G’
summary (poisons.glm)
anova(poisons.glm) analysis of deviance table

Once again there is a whole range of ancillary functions such as deviance, predict and
residuals. Thelatter will producea four types of residuals, but uses devianceresidualsby
default.

The family argumentis also used to specify other aspectsof thefit such as the link function.
For example, one can have family=binomial (link=probit)). With the binomial the re-
sponsecan either beafactor (takenasfirstlevel vstherest) or amatrix with two columnsgiving
the number of successesand failures. Thereisaquasi family allowing user-defined models,
and arobust family generator allowing robust fitting. The scope for ingenuity is unlimited!

Binary Data

The following example is taken from D. Collett (1991) Modelling Binary Data, page 217.
Numbers of rotifersfalling out of suspension for two species (Polyartha major and Keratella
cochlearis) are given for different fluid densitiesin thetable, asfilerotifer.dat:

density pm.y pm.tot kc.y kc.tot
1.019 11 58 13 161
1.020 7 86 14 248
1.021 10 76 30 234
1.030 19 83 10 283
1.030 9 56 14 129
1.030 21 73 35 161
1.031 13 29 26 167
1.040 34 44 32 286
1.040 10 31 22 117
1.041 36 56 23 162
1.048 20 27 7 42
1.049 54 59 22 48
1.050 20 22 9 49
1.050 9 14 34 160
1.060 14 17 71 74
1.061 10 22 25 45
1.063 64 66 94 101
1.070 68 86 63 68
1.070 488 492 178 190
1.070 88 89 154 154

An annotated session follows. Several points need further explanation.

13.4 Generalized Linear Models 40

The parametrizationsneed careful consideration. By default S usesalinear-model parameter-
ization, contrasting each level with the average of the previouslevels. Thisis less useful for
GLMs. Thefirst way out below isto remove theoverall mean (the -1 term) which forcessepa-
rate meansfor each species. We can also changeto the GLIM parameterizationby theoptions
line.

Thereisacatch here. By default factor () numbersthefactor levelsin alphabetical order, so
we have to force the order we want (see §10).

pm.prop
0.6 0.8 1.0

0.4

0.2

0.0

1.02 1.03 1.04 1.05 1.06 1.07
density

Figure6: Plotsfor Rotifer data. The squaresymbolsand dashed lineindicatespeciesPolyartha
major.

rotifers <- read.table("rotifer.dat", header=T)

rotifers list the data frame
attach(rotifers)
kc.prop <- kc.y/kc.tot compute the proportions

pm.prop <- pm.y/pm.tot

and plot them
plot(density, pm.prop, type="n", ylim = c(0,1))
points(density, pm.prop, pch=0)
points(density, kc.prop)

fit separate models for each species
glm.pm <- glm(cbind(pm.y, pm.tot-pm.y) ~ density, binomial(logit))
glm.kc <- glm(cbind(kc.y, kc.tot-kc.y) ~ density, binomial(logit))
glm.pm; glm.kc bare summaries
Now combine the two species
species <- factor(c(rep("pm",20), rep("kc",20)),
levels= c("pm", "kc"))
rotifer2 <- data.frame(dens = c(density, density),
yes = c(pm.y, kc.y), tot = c(pm.tot, kc.tot), species)
attach(rotifer2)
glm.rot <- glm(cbind(yes, tot-yes) ~ dens * species, binomial(logit))



13.4 Generalized Linear Models 41

glm.rot Note the parameterization used
glm.rot <- glm(cbind(yes, tot-yes) ~ -l1+dens * species, binomial(logit))
glm.rot separate means for each species
options(contrasts=c("contr.treatment", "contr.poly"))

glm.rot <- glm(cbind(yes, tot-yes) ~ dens*species, binomial(logit))
glm.rot
summary(glm.rot)
anova(glm.rot) over-dispersion, but a common slope
looks OK
glm.rot <- glm(cbind(yes, tot-yes) ~ dens + species, binomial(logit))
lines(density, fitted(glm.rot)[species=="kc"])
lines(density, fitted(glm.rot)[species=="pm"], 1ty=3)
these lines are rather crude, so try harder!
xden <- seq(1.02, 1.07, 0.001)
yden <- predict(glm.rot, data.frame(dens=rep(xden,2),
species=factor(c(rep("pm'", 51), rep("kc", 51)),
levels= c("pm", "kc"))), type='"response')
lines(xden, yden[1:51], 1ty=3)
lines(xden, yden[52:102], 1ty=3)

Poisson Data

We consider the log-linear analysis of a contingency table. As this has two ‘history’ factors
and two levels of the the response, it could also be treated as binomial data. The responseis
the occurrence of coronary heart disease. Thetableis of the form:

blood pressure
serum
chd cholesterol 1 2 3 4
yes 1 2 3 3 4
2 3 2 1 3
3 8 11 6 6
4 7 12 11 11
no 1 117 121 47 22
2 85 98 43 20
3 119 209 68 43
4 67 99 46 33

with log-linear analysis:

num <- scan()
23343213811667 12 11 11
117 121 47 22 85 98 43 20 119 209 68 43 67 99 46 33

fnames <-list(press=1:4, serum=1:4, chd=c("y","n"))
kk <- data.frame(fac.design(c(4,4,2),fnames), num)

13.5 Updating and Selecting Models 42

kk.glm <- glm(num ~ serumxpress*chd, family=poisson, data=kk)
anova(kk.glm, test='"Chi')

kk.glml <- update(kk.glm, . ~ .-serum:press:chd)
par{(mfrow=c(1,2)); plot(kk.glml)

The anova command gives an analysisof deviancefor g1m objects:

> anova(kk.glm, test="Chi")
Analysis of Deviance Table

Poisson model
Response: num

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev  Pr(Chi)

NULL 31 1644.227
serum 3  77.370 28  1566.856 0.0000000
press 3 318.287 25 1248.570 0.0000000
chd 1 1169.609 24 78.960 0.0000000
serum:press 9 24.449 15 54.511 0.0036454
serum:chd 3  30.452 12 24.059 0.0000011
press:chd 3  19.284 9 4.775 0.0002388
serum:press:chd 9 4.775 0 0.000 0.8534820

13.5 Updating and Selecting Models

There are number of facilitiesto update models. Theupdate function takesaresult of a pre-
vious fit and changesthe model in some way.

add1 anddropl show the (approximate) effectsof adding and droppingsingleterms, and step
runsafairly general stepwisefitting procedure. (Notethat S-Plus 3.x hasaseparatestepwise
function for multiple regression.)



Multivariate Analysis

14 Multivariate Analysis

S-Plus is particularly rich is functionsfor exploratory multivariate analysis, such as pairs,
brush and spin. Therearealso functionsfor classical multivariateanalysis.

Clustering

Theworkhorseshere aredist which computesdistancematrices (alsousedin cmdscale) and
hclust which computesacluster tree by single-, average- or complete linkage.

dist
hclust
cutree
plclust
labclust
clorder
subtree
mclust
mclass
mreloc

Graphical Methods

Distance matrix caculations
Hierarchica clustering

Create groups from a cluster tree
Plot acluster tree

Label acluster tree plot

Re-order leaves of acluster tree
Extract part of acluster tree
"model-based” clustering
auxiliary functions

Thisisavaried collection of functionsfor displaying multivariate data.

cmdscale
faces
mstree
stars
biplot

Classica multi-dimensiona scaling
Chernoff’s faces

Minima spanning tree

Star plots

Biplot (v 3.2)

Two analysesof socio-economic dataon Swiss cantons:

library(ripley)

d <- dist(swiss.x)

x <- cmdscale(d)

cl <- x[ ,1]; c2 <- x[ ,2]

egscplot(cl, c2, type="n") # from library(ripley)

text(cl, c2, seq(cl))

h <- hclust(d)
plclust(h)
cutree(h, 3)

plclust(clorder(h, cutree(h, 3))) # re-order tree into three groups

Multivariate Analysis

44

Matrix Methods

The classical methods based on variance-covari ance matrices.

mahalanobis Maha anobis distances

cancor Canonica correlation anaysis
discr Discriminant anaysis

pcrcomp Principal components analysis
princomp Principal components analysis (v 3.2)
factanal Principal components analysis (v 3.2)

An example of discriminant analysiswith Fisher’siris data:

iris.var <- rbind(iris[,,1], iris[,,2], iris[,,3]1)

species <- rep(1:3,rep(50,3))

iris.dis <- discr(iris.var, 3)

iris.dv <- iris.var %*% iris.dis$vars # find discriminant variables

brush(cbind(iris.dv, species))

iris.x <- iris.dv[,1] ; iris.y <- iris.dv[,2]

iris.lab <- c(rep("s", 50), rep("c", 50), rep('"v", 50))

plot(iris.x, iris.y, type='"n", xlab='"first discriminant variable',
ylab="second discriminant variable')

text(iris.x, iris.y, iris.lab, cex=0.7)

¥4 c
vV
c c s
0 | c
v ¢ < cC ¢
c
o v c c
k=) c ¢ s
8 v v v 6c ¢ Ss 3
© ol v A c c %s
> T c
- v P §
S vV cc s 35
£ v vVoywy & ¢ 58S
£ v v T o s
= s.s
s~ v v c s ST
2 v v c S seS
5 v v v sSSS
g v v v ¢ s S
] v ¢ N s
@ @ 4 vy ¢ s S s
7] v v s
Vv y s
¥ s s
vV
v
o
vy VY
v B
T T T T
-10 -5 0 5

first discriminant variable

Figure 7: Discriminant analysis



Libraries 45

A Libraries

Librariesare amechanismto add ‘ packages' of extraobjects (functionsand datasets) to S. To
find out which librariesare availabletype

> library()
which on one of my systemsgave:

The following sections are available in the library:

SECTION BRIEF DESCRIPTION

chron Functions to handle dates and times.

examples Functions and objects from The New 3 Language.
external Handle external (large) objects.

image Display images.

maps Display of maps with projections.

progdraw Sdraw example from Programmer’s Manual.

progexam Examples from Programmer’s Manual.

semantics Functions from chapter 11 of The New 3 Language.
ripley B.D. Ripley’s teaching functions

For more information on each library section see the README file in
each library section directory or in S-PLUS run:
library( help = <section_name> )

Library sections from Venables & Ripley (1994)
‘Modern Applied Statistics with S-Plus’

MASS main library
nnet neural networks
spatial spatial statistics

To find out more about a section, use
> library(help=name)
eg.

> library(help=robust)
functions for robust statistics

IQR(y) inter-quartile range

huber(y, k = 1.5) Huber location with MAD scale

hubers(y, k = 1.5, mu, s) Huber proposal 2 [with mu known, s known]
hreg(x, y, k = 1.5) Huber robust regression

datasets

chem copper in wholemeal flour

abbey nickel in syenite rock

Al Libraryripley 46

milk lead in milk powder
phones Belgian ’phone calls 1950-1973

To usethelibrary, invokeit by
> library(name)

which attachesit asadatadirectory at the end of the searchlist. Thuslibrariescannot over-ride
standard functionsnor your own functions. To make alibrary over-ride the system functions,
use

> library(name, first=T)

which attachesit at position 2 (after the . Data directory).

Al Libraryripley

Thisisa collectionof useful functionsand datasetsfor teaching at Oxford.

BoxCox(x,¥y) Box-Cox plot for transformations.
gl(from,to,size,x) replacement for GLIM ¥%GL.

egscplot equally-scaled plot function.
stdres(object) calculate standardized residuals from afit.
studres(object) calculate Studentized residuals from afit.

Datasetsin thelibrary are:

accdeaths US accidental deaths 1973-8

cement dataset on heat evolved in setting cements

cpus dataset on performance of cpus

deaths time series on UK lung deaths 1974-9 from Diggle
mdeaths, fdeaths as above, for males and females

gehan remission times on leukaemia patients (censored)

forbes Forbes’ dataset on boiling points, from Atkinson

hills dataset on times of Scottish hill races

leuk (uncensored) survival times on leukaemia patients

1h time series on luteinizing hormone from Diggle

mammals body weight(kg) and brain weight (g) of mammals, from Weisberg
mcycle motorcycle impact data— Silverman JRSS B 1985
motorette accelerated lifetesting on motorettes

nottenm time-series of temperatures in Nottingham, 1920-1939
road dataset on road deathsin the US

rock dataset on relating permeability to physical measurements
rubber dataset on rubber wear

ships ship damage incidents, from McCullagh & Nelder

trees Black Cherry trees heights, diameters and volumes

A.2 Sources of Libraries

Many S users have generously collected together their functionsand datasetstogether into li-
braries and made them publically available. An archive of librariesis maintained at Carnegie-



A2 Sourcesof Libraries 47

Mellonasaserviceto the statistical professionby Mike Meyer. To obtaindetail sof its contents
by e-mail send a messageto

statlib@lib.stat.cmu.edu
with body

send index
send index from S

Ftptolib.stat.cmu.edu with user statlib isalso available.



