Nearest Neighbors

Prof. Eric A. Suess

February 1, 2021

Introduction

We will begin discussing Classification using Nearest Neighbors.

According to the author, nearest neighbors classifiers are defined by their classifying of unlabeled observations/examples by assigning them the class of the most similar labeled observations/examples.

k-NN algorithm

- Training dataset is made up of observations/examples that are classified into several categories, labeled by a nominal variable.
- Test dataset contains unlabeled observations/examples
- k-NN identifies k records in the training data that are the "nearest" in similarity.
- The unlabeled test observations/examples are assigned to the class of the majority of the k nearest neighbors.

Distance

Distance is calculated in the feature space

- Euclidean distance
- Manhattan distance

Euclidean distance

In a data set with n variables/features, the **Euclidean distance** between observations/examples is computed as follows

$$dist(p,q) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + ... + (p_n-q_n)^2}$$

Distance Example

Distance between rows.

aa <- c(1,1) bb <- c(2,2) X <- rbind(aa,bb) X

[,1] [,2] ## aa 1 1 ## bb 2 2

Distance Example

Using the distance function in R.

dist(X)

aa ## bb 1.414214

Direct calculation.

sqrt(sum((aa-bb)^2))

[1] 1.414214

Choosing k

The balance between *overfitting* and *underfitting* the *training data* is a problem known as the **bias-variance tradeoff**

Mean Squared Error

$$\begin{split} & \textit{MSE}(\hat{\theta}) = \textit{Var}(\hat{\theta}) + \textit{Bias}^2(\hat{\theta}) \\ & \textit{E}[(\hat{\theta} - \theta)^2] = \textit{E}[(\hat{\theta} - \textit{E}[\hat{\theta}])^2] + \textit{E}[(\textit{E}[\hat{\theta}] - \theta)^2] \end{split}$$

Choosing k

If k is very large, nearly every training observation/example is represented in the *final vote*, the most common training class always has a majority of voters. The model would always predict the majority class. **High Bias?**

If k is small, potentially a single nearest neighbor will determine the *final vote*, then noise may influence the prediction. **High Variance?**

The best k values is somewhere in between.

See page 71.

Preparing the data

min-max normalization

$$X_{new} = \frac{X - min(X)}{max(X) - min(X)}$$

z-score normalization

$$X_{new} = \frac{X - \mu}{\sigma}$$
 In the formula is the second sec

dummy coding for nominal variables/features

Why is the k-NN algorithm lazy?

Because no abstraction occurs. There is no model, so the method is considered to be a **non-parametric** learning method.

Example

Diagnosing breast cancer with k-NN algorithm.

Using R...

- loading the data
- reading the data into R
- transforming the data
- training data
- testing data
- training the model
- evaluating the model
- improving the model