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Statistical Foundations

The authors of our book make many important observations about
Data Science at the beginning of Chapter 7 (2e Chapter 9).

I “The objective of Data Science is to extract meaning from
data.”

I “Visualization is good for seeing patterns in noisy data.”
I “It is important to be able to see when the patterns we see are

strong enough that they are not mere accidents.”
I “Statistical methods quantify patterns and their
strengths.”

I “Some people think that”big data" has made statistics obsolete.
The argument is that with lots of data, the data can speak
clearly for themselves. This is wrong, as we shall see."

I “This chapter will illustrate a Data Science workflow.”



Samples and Populations

I Recall the Law of Large Numbers
I Recall the Central Limit Theorem



LLN

Sample mean x̄ converges to the population mean µ.

Simulation assuming the populations parameters are known.

mu <- 65; sigma <- 3; # population parameters assumed
B <- 1000
x.sample <- rnorm(B, mu, sigma)
x.running.mean <- numeric(B)
for(i in 1: B){

x.running.mean[i] <- sum(x.sample[1:i])/i
}



LLN
plot(x.running.mean, type="l")
abline(h=mu, col="red")
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CLT

The sampling distribution of x̄ is approximately N(µ, σ2

n ).

Simulation assuming the populations parameters are known.

mu <- 65; sigma <- 3; n <- 25
B <- 1000
x.mean <- numeric(B)
for(i in 1: B){

x.mean[i] <- mean(rnorm(n, mu, sigma))
}



CLT
hist(x.mean)
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CLT in the Tidyverse

Simulation assuming the populations parameters are known.

library(pacman)
p_load(mosaic, tidyverse)
Trials_n <- do(1000) * mean( rnorm(n, mu, sigma) )



CLT in the Tidyverse
Trials_n %>% ggplot(aes(mean)) +

geom_histogram(bins=10)
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ModernDive Chapter 7 Sampling

For a ModernDive into sampling and the Central Limit Theorem try
the code in Chapter 7 Sampling.

In this chapter the infer R package is ued. This package has a
number of modern functions to easily simulate resampling from a
datafram.

For further modern code, check out the tidymodels R package
rsample.

https://moderndive.com/
https://moderndive.com/7-sampling.html
http://infer.tidymodels.org/
https://www.tidymodels.org/
https://rsample.tidymodels.org/


Bootstrap

The bootstrap is a statistical method that allows us to approximate
the sampling distribution even without access to the population.

Bootstrapping is a resampling method.

Bootstrapping uses sampling with replacement.



Sketch the difference

Note that the main difference between the CLT and the Bootstrap
is that for the CLT the sample size n goes to infinity and with the
Bootstrap the sample size remains fixed and the number of samples
B goes to infinity.



ModernDive Chapter 8 Bootstrapping and Confidence
Intervals.

For a ModernDive into Bootstrapping and Confidence Intervals try
the code in Chapter 8 Bootstrapping and Confidence Intervals.

In this chapter the infer R package is ued. This package has a
number of modern functions to easily simulate resampling from a
dataframe.

For further modern code, check out the tidymodels R package
rsample.

https://moderndive.com/
https://moderndive.com/8-confidence-intervals.html
http://infer.tidymodels.org/
https://www.tidymodels.org/
https://rsample.tidymodels.org/


Outliers

Outliers should never be dropped unless there is a clear rationale. If
outliers are dropped this should be clearly reported.

p_load(anomalize, tibbletime)

tidyverse_cran_downloads %>%
time_decompose(count, merge = TRUE) %>%
anomalize(remainder) %>%
time_recompose() %>%
plot_anomalies(ncol = 3, alpha_dots = 0.25)



Outliers

tidyr tidytext tidyverse

stringr tibble tidyquant

lubridate purrr readr

ggplot2 glue knitr

broom dplyr forcats
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Statistical Models

Statistical models are used to explain variation between response
variables and explanatory variables.

Linear Regression models are commonly used to build models. They
are fit using the least squares algorithm. This algorithm leads to
unbiased estimators that have minimum variance.

I We know that the estimators of the parameters in the model
are computed used optimization.

I We know that the estimators are unbiased.



Confounding Variables

What does the correlation coefficient measure? Answer: ???

Recall “Correlation does not imply causation.”

The gold standard is a controlled experiment. The authors describe
the idea of A/B testing.

Most data collected today is observational. So no designed
experiment has been used.

Recall Simpson’s Paradox.



Problems with p-values

Everyone is using many many many p-values all assuming α = 0.05.

This causes much higher overall error rates.

When using multiple comparisons and overall error rate should be
addressed.



Appendix E.

Be sure to read Appendix E at the end of the book.

It includes a very nice summary of fitting Multiple Linear Regression.



Confounding variables

A confounding variable is another variable that influences the other
variables.

Simpson’s Paradox

Edward Simpson: Bayes at Bletchley Park

https://en.wikipedia.org/wiki/Confounding
http://en.wikipedia.org/wiki/Simpson%27s_paradox
http://onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2010.00424.x/abstract


Example of Simpson’s Paradox
### synthetic data

# Consider book price (y) by number of pages (x)

z = c("hardcover","hardcover",
"hardcover","hardcover",
"paperback", "paperback","paperback",
"paperback")

x1 = c( 150, 225, 342, 185)
y1 = c( 27.43, 48.76, 50.25, 32.01 )

x2 = c( 475, 834, 1020, 790)
y2 = c( 10.00, 15.73, 20.00, 17.89 )

x = c(x1, x2)
y = c(y1, y2)



Example of Simpson’s Paradox

plot(x,y)
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Example of Simpson’s Paradox

# correlation

cor(y, x)

## [1] -0.5949366

cor(y1, x1)

## [1] 0.8481439

cor(y2, x2)

## [1] 0.9559518



Example of Simpson’s Paradox

# linear regression

lm(y ~ x)

##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 41.15238 -0.02665



Example of Simpson’s Paradox

# linear regression

lm(y1 ~ x1)

##
## Call:
## lm(formula = y1 ~ x1)
##
## Coefficients:
## (Intercept) x1
## 13.0613 0.1177



Example of Simpson’s Paradox

# linear regression

lm(y2 ~ x2)

##
## Call:
## lm(formula = y2 ~ x2)
##
## Coefficients:
## (Intercept) x2
## 1.72389 0.01819



Example of Simpson’s Paradox

Summary: Simpson’s Paradox is the changing of the direction of a
relationship with the introduction of another variable.

The relationship between Price and Number of pages in a book
changes with the introduction of the variable Type of Book
(Hardcover, Paperback).

See the R Markdown document SimpsonsParadox available on
RPubs.com/esuess.

http://rpubs.com/esuess/SimpsonsParadox
http://rpubs.com/esuess

