
Statistics 6501, Winter 2002 1

Simulating Discrete Random Variables

Binomial

One way to simulate a binomial random variable is to simulate the events of which it is composed. If this
binomial random variable has parameters n and p, then we can independently simulate n events, each with
probability p of being a success. The number of successes, then, would be the outcome of the binomial
random variable. The code listed below uses this method to create an integer valued function that returns
the outcome of the random variable: (Note that in this function and in all other code in this discussion the
type extended is used. This is a floating point variable type that is defined in Turbo Pascal. It has about 20
significant digits and can range from 3.4×10−4932 to 1.1×104932. This provides for greater accuracy in some
of these applications; this is particularly necessary in the Poisson function on the next page. I recommend
that you take advantage of any high precision real types that your compiler supports. In Fortran and C the
type double carries about 16 significant digits.)

function binomial(n : integer; p : double): integer;

var i : integer;
successes : integer;

begin
successes := 0;
for i := 1 to n do

if random < p then inc(successes);
binomial := successes;
end;

Geometric

Here again we will use the method of simulating the events that make up the random variable. For a
geometric random variable with parameter p we simulate independent events, each with probability p of a
success occurring, until we observe a success. The number of tries it takes to get the first success is the
outcome of the random variable.

function geometric(p : double): integer;

var i : integer;
success : boolean; (* becomes true if a success occurs *)

begin
success := false;
i := 0;
while not success do
begin
success := random < p;
i := i + 1;
end;

geometric := i;
end;



Statistics 6501, Winter 2002 2

Poisson

The listing below is a function that will return the outcome of a poisson random variable with parameter
λ. We will not be able to discuss the method used here until later in the course.

function poisson(lambda : double): longint;

var i : longint;
product : double;
compare : double;

begin
compare := exp(-lambda);
product := random;
i := 0;
while product > compare do
begin
product := product * random;
i := i + 1;
end;

poisson := i;
end;



Statistics 6501, Winter 2002 3

Application

The code listed below generates 1000 observations from a binomial random variable with n = 20 and
p = 0.10. It keeps track of the min and max of all the outcomes. Also it keeps track of

∑1000
i=1 xi and

∑1000
i=1 x2

i

and uses these to calculate the sample mean (usually denoted by x̄) and the sample variance (usually denoted
by s2). These have the following computational formulas:

x̄ =
∑m

i=1 xi

m
s2 =

∑m
i=1 x2

i−
(
∑m

i=1 xi)
2

m

m−1

where here m = 1000. If m is large (1000 is fairly large) then these shouldn’t be too far from the true
mean and true variance (µ = np and σ2 = np(1− p)).

program GenerateDiscreteDistributions;

var x : double;
Min, Max : integer;
SampleMean, SampleVariance : double;
Sum, SumSq : double;
i : integer;

(* insert random function here *)

(* insert binomial function here *)

begin
Randomize; (* Seeds Turbo Pascal’s random number generator *)
Min := 50;
Max := 0;
Sum := 0;
SumSq := 0;
For i := 1 to 1000 do
begin
x := Binomial(20,0.10);
Sum := Sum + x;
SumSq := SumSq + x * x;
if x < Min then Min := x;
if x > Max then Max := x;

end;
SampleMean := Sum/1000;
SampleVariance := (SumSq - (Sum * Sum)/1000)/1000;
WriteIn(’Sample mean = ’, SampleMean:1:6);
WriteIn(’Sample variance = ’, SampleVariance:1:6);
WriteIn(’min = ’, Min:1:0);
WriteIn(’max = ’, Max:1:0);


